
Kleene Algebra

Georg Struth

University of Sheffield

based on joint work with Jules Desharnais, Bernhard Möller and others

Motivation

program/system analysis requires formalisms that balance

• expressive interoperable modelling languages
• powerful proof procedures

modelling languages: e.g.

• relations used in Z or B
• functions/quantales used in refinement calculi
• modal logics/process algebras used for reactive/concurrent systems

proof procedures dominated by

• interactive proof checking
• model checking

Motivation

questions: are there formalisms that offer better balance

• unify/integrate relational, functional, modal reasoning?
• allow using off-the-shelf automated theorem provers (ATP systems)?

Motivation

questions: are there formalisms that offer better balance

• unify/integrate relational, functional, modal reasoning?
• allow using off-the-shelf automated theorem provers (ATP systems)?

answer: algebraic methods, in particular modal Kleene algebras (maybe)

benefits of algebraic approach:

• simple first-order equational calculi
• rich class of computationally meaningful models
• mechanisms for abstraction and (de)composition
• suitable for ATP systems

This Lecture Series

goal: introduce modal Kleene algebras as computational tools
for modelling and analysing discrete dynamical systems

outline:

1. surveys foundations of (modal) Kleene algebras
2. discusses some computationally interesting models
3. sketches connection with popular computational logics
4. presents some (automation) examples

dual rôle of ATP: a new approach to

• computer mathematics: develop/analyse algebraic structures
• formal methods: develop/analyse programs and systems

apology: highly subjective and incomplete picture

Semirings, Actions and Propositions

semiring: (S,+, ·, 0, 1) “ring without minus”

x+ (y + z)= (x+ y) + z x+ y= y + x x+ 0= x

x(yz)= (xy)z x1= x 1x= x

x(y + z)= xy + xz (x+ y)z= xz + yz

x0= 0 0x= 0

interpretation: S represents actions of some discrete dynamical system

• + models nondeterministic (angelic) choice (cf. next slide)
• · models sequential composition
• 0 models abortive action
• 1 models ineffective action

Semirings, Actions and Propositions

remarks:

• swapping multiplication yields opposite semiring
• semiring is idempotent if x+ x = x
• idempotent semirings are naturally ordered by x ≤ y ⇔ x+ y = y

hence (S,+, 0) is upper semilattice with least element 0
• idempotency turns addition into choice

questions:

• how can the state space of the system be included?
• how can the “limit behaviour” of the system be described?

Semirings, Actions and Propositions

task: include the state space

test algebras: [ManesArbib] “Boolean centre”

• Boolean subalgebra (test(S),+, ·,¬, 0, 1) embedded into [0, 1] of S
• + coincides with Boolean join
• · coincides with Boolean meet

remarks:

• Boolean algebra test(S) captures the main intuition behind state spaces
• elements of test(S) are sets of states
• alternative interpretations as propositions of a system or tests of a program

notation: x, y, z . . . for actions; p, q, r, . . . for tests/propositions

Kleene Algebras

task: describe “limit behaviour”

Kleene algebras: [Kozen] idempotent semiring with star satisfying

• unfold axiom 1 + xx∗ ≤ x∗
• induction axiom y + xz ≤ z ⇒ x∗y ≤ z
• and their opposites

1 + x∗x ≤ x∗ y + zx ≤ z ⇒ yx∗ ≤ z

Models of Kleene Algebra

Boolean semiring: structure A2 = ({0, 1},+, ·, ∗, 0, 1) with operations

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

0∗ = 1∗ = 1.

question: can you give the test algebra?

Models of Kleene Algebra

binary relation: set of ordered pairs on set M

R = {(a, b) : a, b ∈M}

operations:

• empty relation: ∅ (the empty set)
• unit relation: ∆ = {(a, a) : a ∈M}
• union: R ∪ S = {(a, b) : (a, b) ∈ R or (a, b) ∈ S}
• product: R ◦ S = {(a, b) : (a, c) ∈ R and (c, b) ∈ S for some c ∈M}
• star: R∗ =

⋃
i≥0R

i where R0 = ∆ and Ri+1 = R ◦Ri for all i ∈ N

remark: R∗ corresponds to the reflexive transitive closure of R

Models of Kleene Algebra

fact: (2M×M ,∪, ◦, ∗, ∅,∆) is a Kleene algebra, the full relation Kleene algebra
over M

proof: check that relations satisfy Kleene algebra axioms. . .

fact: every subalgebra of a full relation Kleene algebra is again a Kleene algebra;
a relation Kleene algebra

proof:

• logically, Kleene algebras are universal Horn theories
• a general theorem of universal algebra says that universal Horn theories

are closed under subalgebras

Models of Kleene Algebra

question: can you define the test algebra of a relation Kleene algebra?

remarks:

• binary relations yield a standard semantics for (imperative) programs
• they model their input/output behaviour with respect to stores
• they capture nondeterminism and are very useful for specifications

(even for functional programs)
• we will consider this semantics more abstractly below

Models of Kleene Algebra

question: the operations of Kleene algebras are precisely the regular operations;
is there any connection with language theory?

words are finite sequences over a (finite) alphabet Σ

languages are sets of words

operations:

• empty language: ∅ (empty set)
• unit language: {ε} with empty word ε
• union: L1 ∪ L2 as in set theory
• product: L1 ◦ L2 = {w1w2 : w1 ∈ L1 and w2 ∈ L2}
• star: L∗ = {w1w2 . . . wn : wi ∈ L and n ≥ 0}

Models of Kleene Algebra

fact: (2Σ∗,∪, ◦, ∗, ∅, {ε}) is a Kleene algebra, the full language Kleene algebra
over M

fact: every subalgebra of a full language Kleene algebra is again a Kleene algebra;
a language Kleene algebra

regular subsets/events: obtained from finite subsets of Σ∗ by finite number
of regular operations

consequence: strong link between Kleene algebras and regular languages

Models of Kleene Algebra

slogan: Kleene algebras are algebras of regular events

• Kozen has shown that an equation holds in Kleene algebras
iff it holds about regular events/expressions
• mathematically, the algebra of regular events over Σ

is the free Kleene algebra generated by Σ

consequence: equations in Kleene algebras can be decided by automata

remarks:

• this correspondence motivates the name “Kleene algebra”
• universal Horn theory of Kleene algebras is undecidable (Post)
• there is no finite equational axiomatisation for the equational theory

of regular events

Models of Kleene Algebra

paths: finite sequences of states from P ; empty path ε

path product: glue paths together

σ.p · p.σ′ = σ.p.σ′ σ.p · q.σ′ undefined

operations on sets of paths:

• P1 ◦ P2 = {π1 · π2 : π1 ∈ P1, π2 ∈ P2 and π1 · π2 defined}
• other operations as usual (what is multiplicative unit?)

consequence: sets of paths form path Kleene algebras

Models of Kleene Algebra

trace: alternating sequence p0a0p1a1p2 . . . pn−2an−1pn−1, pi ∈ P , ai ∈ A

trace product: σ.p · p.σ′ = σ.p.σ′ σ.p · q.σ′ undefined

operations on sets of traces:

• T1 ◦ T2= {τ1 · τ2 : τ1 ∈ T1, τ2 ∈ T2 and τ1 · τ2 defined}
• other operations as usual (what is multiplicative unit?)

consequence: sets of traces form trace Kleene algebras

Relationship Between Models

special cases: essentially by forgetting structure in trace MKA

• path/language Kleene algebras forget actions/propositions
• relation Kleene algebras forget sequences between endpoints

property: (equational) properties are inherited by (relations), paths, languages

remark:

• traces, paths, languages, relations are computationally interesting models
• Kleene algebras are applicable in interoperable contexts

Further Models

matrix model: consider n× n matrices over Kleene algebra

• 0 and 1 are zero and unit matrix
• + and · are standard matrix addition and multiplication
• star defined by partitioning a non-singleton matrix into submatrices a, b, c, d,

with a and d square, and setting(
a b
c d

)∗
=

(
f∗ f∗bd∗

d∗cf∗ d∗ + d∗cf∗bd∗

)
where f = a+ bd∗c

fact: matrices over Kleene algebras form Kleene algebras

Digression: Automata, Algebraically

finite automaton: [Conway] (u,A, v) with

• u 0-1 vector of start states
• v 0-1 vector of accepting states
• A transition matrix over Kleene algebra

language accepted by automaton is element uTA∗v of Kleene algebra

simple automaton: transition matrix of form

A = J +
∑
a∈Σ

a ·Aa

for 0-1 matrices J (ε-matrix) and Aa

fact: automata theory can be developed from this angle

Digression: Automata, Algebraically

example: consider automaton with states {p, q}, alphabet {a, b}, start state p,
accept state q, and transitions

p→a p q →a q p→b q q →b q

algebraic automaton: ((
1
0

)
,

(
a b
0 a+ b

)
,

(
0
1

))

language accepted:

(
1 0

)
·
(
a b
0 a+ b

)∗
·
(

0
1

)
=
(

1 0
)
·
(
a∗ a∗b(a+ b)∗

0 (a+ b)∗

)
·
(

0
1

)
= a∗b(a+ b)∗

Further Models

tropical semiring: (N∞,min,+,∞, 0, ∗) is Kleene algebra if n∗ = 0 for all n ∈ N∞

applications:

• combinatorial optimisation
• path problems (encoded via matrices)
• rich mathematical theory

remark: this area alone would deserve a lecture series. . .

remark: max-plus semiring on N−∞ cannot be extended to a Kleene algebra

Kleene Algebras and Regular Programs

fact: KAs capture while-programs/guarded commands in various semantics

abort= 0

skip= 1

x; y= xy

if p then x else y = px+ ¬py
while p do x = (px)∗¬p

remarks:

• the usual semantic mappings have been suppressed
• the assignment rule cannot be modelled in this setting
• it can be modelled in an extension formalising substitution

Calculus of Kleene Algebras

rich calculus: all regular identities hold in Kleene algebras. e.g.,

1 ≤ x∗ x ≤ x∗ xx∗ ≤ x∗ x∗x ≤ x∗ 1 + xx∗ = x∗ 1 + x∗x = x∗

x∗x∗ = x∗ x∗∗ = x∗ (xy)∗x = x(yx)∗ (x+ y)∗ = x∗(yx∗)∗

some quasi-identities:

x ≤ y ⇒ xz ≤ yz x ≤ y ⇒ zx ≤ zy
x ≤ y ⇒ x+ z ≤ y + z x ≤ y ⇒ x∗ ≤ y∗

x ≤ 1⇒ x∗ = 1 x ≤ y ⇒ x∗ ≤ y∗

xz ≤ zy ⇒ x∗z ≤ zy∗ zx ≤ yz ⇒ zx∗ ≤ y∗z
xy ≤ y ⇒ x∗y ≤ y yx ≤ y ⇒ yx∗ ≤ y

more results: www.dcs.shef.ac.uk/∼georg/ka

Example: Church-Rosser Theorem and Concurrency Control

abstract reduction: rewrite relations as binary relations

Church-Rosser theorem: y∗x∗ ≤ x∗y∗ ⇒ (x+ y)∗ ≤ x∗y∗

proof:

• (x+ y)∗ = (y∗x∗)∗ is regular identity
• it suffices to show y∗x∗ ≤ x∗y∗ ⇒ (y∗x∗)∗ ≤ x∗y∗

(induction over number of peaks)
• by star induction it suffices to show 1 + y∗x∗x∗y∗ ≤ x∗y∗
• this splits into 1 ≤ x∗y∗ and y∗x∗x∗y∗ ≤ x∗y∗
• the first identity (base case) is trivial
• for the second one (induction step) we calculate

y∗x∗x∗y∗ = y∗x∗y∗ ≤ x∗y∗y∗ = x∗y∗

Example: Church-Rosser Theorem and Concurrency Control

discussion:

• induction on number of peaks without external induction measure
• in concurrency control (x+ y)∗ corresponds to nondeterministic loop
• this loop can be separated if y∗x∗ sequences can be rearranged
• theorem holds also in trace, path and language model

outlook:

• abstract part of Church-Rosser theorem in λ-calculus can be proved
in a similar way
• many other rewrite theorems can be proved as well

further application: transformation of while programs

General Remarks on Kleene Algebras

conclusion: Kleene algebras

• focus on the essential operations for modelling programs and discrete systems
• support abstract and concise reasoning within first-order logic
• have rich class of computationally meaningful models
• are strongly linked with decision procedures
• can be integrated with ATP systems (later. . .)

remark: induction axiom y + xz ≤ z ⇒ x∗y ≤ z and dual

• provide star elimination rules
• support some inductive reasoning
• we will see further examples later

General Remarks on Kleene Algebras

variations: (see below) by weakening some axioms

• demonic refinement algebras for reasoning about total program correctness in
predicate transformer models
• probabilistic Kleene algebras for analysing

probabilistic protocols via probability transformers
• game algebras that capture combined angelic and demonic behaviour

of agents via gameboard semantics
• basic process algebras

limitations:

• terminating and diverging behaviour cannot be expressed
• “nonregular” induction is not possible
• reasoning about concrete applications is model-sensitive

Adding Modalities

motivation:

• many applications require different approach to actions/propositions
• systems dynamics is often modelled via state transitions;

i.e. mappings from states to states
• various logics “use” Kleene algebras, but what is the precise connection?

idea: modal approach

• actions/propositions via Kripke frames
• system dynamics via images/preimages 〈x|p / |x〉p
• preimages via axiomatisation of domain
• images via axiomatisation of codomain

State Transitions

express: “terminating program a starting from store p creates store q”

p

q

pa

aq

¬q

¬q

in idempotent semiring: pa ≤ aq or equivalently pa¬q = 0

State Transitions

proof of equivalence

p

q

pa

aq

¬q

¬q

pa = pa(q + ¬q) = paq + pa¬q = paq + 0 ≤ aq pa¬q ≤ aq¬q = a0 = 0

State Transitions

alternative: “q contains a-image of p”

p

qa

<a|p

question: how can we model images/preimages directly in idempotent semirings?

Image

relational model: complement of image of set p under relation a

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�
�
�
�
�
�
�

�
�
�

p

a

<a|p

is greatest set that does not admit an a-transition from p

Domain on Trace, Path, Language and Relation Semirings

intuition:

• relation semiring: d(R) = {a : (a, b) ∈ R}
• trace semiring: d(T) = {p : p = first(τ) and τ ∈ T}
• path semiring: analogous
• language semiring: d(∅) = ∅ and d(L) = {ε} else

general idea:

• domain as mapping d : S → S on semiring S
• d(x) models states at which action x is enabled
• d(x) should be

– ≤ 1
– least left preserver of x: x ≤ px⇔ d(x) ≤ p
• equational axioms would be nice

Domain Semirings

general idea:

• axiomatise domain as mapping d : S → S on semiring S

• d(x) models states at which action x is enabled

• d(x) should be
– ≤ 1
– least left preserver of x: x ≤ px⇔ d(x) ≤ p

where px models restriction of action x to states in p
• equational axioms would be nice

question: what would be the type of p?

Domain Semirings

domain semiring: semiring with mapping d : S → S that satisfies

x+ d(x)x= d(x)x d(xy)= d(xd(y)) d(x+ y)= d(x) + d(y)

d(x) + 1= 1 d(0)= 0

some intuition:

• axiom 1: x ≤ d(x)x means that domain is a left preserver
• axiom 2: d(xy) is local on y through its domain
• axiom 3: enabling a choice means enabling one alternative or the other
• axiom 4: domain is smaller than 1 (cf. next slide)
• axiom 5: the abortive action is never enabled

Domain Semirings

property: every domain semiring is automatically idempotent

further properties: the axioms

• are irredundant (use model generator Mace4)
• cannot be weakened to inequalities (Mace4)
• imply least left preservation
• imply many “natural properties” (cf. next slides)

domain elements: d(x) = x says “x is domain element”

Properties of Domain

fact: Let S be a domain semiring. Let x, y ∈ S and let p ∈ d(S). Then

• d(x)x = x (domain is a left invariant)
• d(p) = p (domain is a projection)
• d(xy) ≤ d(x) (domain increases for prefixes)
• x ≤ 1⇒ x ≤ d(x) (domain expands subidentities)
• d(x) = 0⇔ x = 0 (domain is very strict)
• d(1) = 1 (domain is co-strict)
• x ≤ y ⇒ d(x) ≤ d(y) (domain is isotone)
• d(px) = pd(x) (domain elements can be exported)
• d(x)d(x) = d(x) (domain elements are multiplicatively idempotent)
• d(x)d(y) = d(y)d(x) (domain elements commute)
• x ≤ px⇔ d(x) ≤ p (domain elements are least left-preservers)
• xy = 0⇔ xd(y) = 0 (domain is weakly local)

Domain Algebra

question: how can we relate domain elements with tests?

property: for every domain semiring S, the sub-structure (d(S),+, ·, 0, 1)
is a bounded distributive lattice

proof: (with ATP)

1. check closure properties, d(1) = 1 and d(0) = 0
2. this gives sub-semiring
3. d(x) ≤ 1 is axiom and d(x)d(x) = d(x)
4. but semirings satisfying these two properties are distributive lattices [Birkhoff]

notation:

• (d(S),+, ·, 0, 1) is called domain algebra of S
• p, q, r . . . for domain elements

Domain Algebra

question: how can we enrich the domain algebra?

answer: (examples)

1. Heyting algebra: add Galois connection (and closure condition for →)

pq ≤ r ⇔ p ≤ q → r

2. Boolean algebra: add antidomain operation a : S → S with axioms

d(x) + a(x) = 1 d(x)a(x) = 0

Boolean Domain Algebra

assume: semiring that satisfies the domain/antidomain axioms

consequence: d(S) is the largest Boolean subalgebra of S, so

d(S) = test(S)

properties: (ATP)

• a2(x) = d(x)
• a(x) is greatest left annihilator of x: px = 0⇔ p ≤ a(x)

consequence:

• d can be replaced by a2

• many domain/antidomain axioms become redundant
• axiomatisation can be simplified
• this yields. . .

Boolean Domain Semirings

Boolean domain semiring: semiring S with mapping a : S → S that satisfies

a(x)x= 0 a(xy)≤ a(xa2(y)) a2(x) + a(x)= 1

remarks:

• ATP/model search is very helpful in this development
• simple axioms induce rich modal calculus. . .

Modal Semirings

idea: define forward/backward diamonds as preimages/images

|x〉p = d(xp) 〈x|p = d◦(px)

where codomain operation d◦ is dual of domain

consequence:

• we have |x〉0 = 0 and |x〉(p+ q) = |x〉p+ |x〉q
• this yields

– distributive lattices with operators
– Heyting algebras with operators
– Boolean algebras with operators

convention: we will call KAs with Boolean domain modal KAs (MKAs)

Modalities, Symmetries, Dualities for Boolean Domain

demodalisation: |x〉p ≤ q ⇔ ¬qxp ≤ 0 〈x|p ≤ q ⇔ px¬q ≤ 0

dualities:

• de Morgan: |x]p = ¬|x〉¬p [x|p = ¬〈x|¬p
• opposition: 〈x|, [x| ⇔ |x〉, |x]

symmetries:

• conjugation: (|x〉p)q = 0⇔ p(〈x|q) = 0
• Galois connection: |x〉p ≤ q ⇔ p ≤ [x|q

benefits: rich calculus (automatically verified)

• symmetries as theorem generators
• dualities as theorem transformers

Kleene Modules

Kleene module: [Leiß06] structure (K,L, :) with

(x+ y)p= xp+ yp x(p+ q)= xp+ xq (xy)p= x(yp)

1p= p x0= 0 xp+ q ≤ p⇒ x∗q ≤ p

remark: scalar product : omitted

fact: modal Kleene algebras are Kleene modules with : = λxλp.|x〉p

consequence: close relationship with computational logics

MKAs and Propositional Dynamic Logic

fact: MKAs are dynamic/test algebras

proof:

• dynamic algebras are almost Kleene modules
• main task is to show equivalence of

– module induction law |x〉p+ q ≤ p⇒ |x∗〉q ≤ p
– Segerberg axiom |x∗〉p− p ≤ |x∗〉(|x〉p− p)

extensionality: (∀p.|x〉p = |y〉p)⇒ x = y

intuition: extensionality forces Kripke-style models

corollary: extensional MKAs are essentially propositional dynamic logics

MKAs and Propositional Dynamic Logic

benefits: MKA offers

• simpler/more modular axioms
• richer model class (beyond Kripke frames)
• more flexible setting

perspective:

• simple automated reasoning about programs and systems
with off-the-shelf ATP systems
• easily extendable to the automation of first-order variants, e.g.,

∃x∀p∃q.(|x〉f(p) ≤ |x〉g(q)→ |x]h(p, q) = 0)

• some temporal logics and Hoare logics subsumed

MKAs and Linear Temporal Logic

encoding:

• temporal operators (use one single action x)

Xp = |x〉p Fp = |x∗〉p Gp = |x∗]p pUq = |(px)∗〉q

• initial state initx = [x|0 “there’s nothing before the beginning”
• validity of temporal implications σ |= p→ q ⇔ initx · p = q
• tests now model sets of traces and x models the abstract tail relation

MKAs and Linear Temporal Logic

LTL axioms: von Karger’s variant of [Manna/Pnueli]

|(px)∗〉q = q + p|x〉|(px)∗〉q 〈(xp)∗|q = q + p〈(xp)∗|〈x|q
|(px)∗〉0 ≤ 0 〈x|0 = 1

|x∗](p→ q) ≤ |x∗]p→ |x∗]q [x∗|(p→ q) ≤ [x∗|p→ [x∗|q
|x∗]p ≤ p|x]|x∗]p |x∗](p→ |x]p) ≤ |x∗](p→ |x∗]p)

p ≤ [x||x〉p p ≤ |x]〈x|p
initx ≤ |x∗](p→ [x|q)→ |x∗](p→ [x∗|q) initx ≤ |x∗]p→ |x∗][x|p

|x](p→ q) = |x]p→ |x]q [x|(p→ q) = [x|p→ [x|q
〈x|p ≤ [x|p |x〉p = |x]p

MKAs and Linear Temporal Logic

fact:

1. blue axioms are theorems of MKA
2. violet axioms express linearity of models (in MKA)

benefits:

• reasoning about infinite-state systems possible
• first-order temporal reasoning
• trace model available

remark:

• CTL also subsumed
• CTL∗ needs additional fixed points (and quantale-based setting)

MKAs and Hoare Logic

fact: MKA subsumes (propositional) Hoare logic

explanation: this is Hoare logic without the assignment rule

convention: Kleenean notation for syntax and semantics

validity of Hoare triple: |= {p} x {q} ⇔ 〈x|p ≤ q

“terminating program x starting from store p creates store q”

validity of implication: |= p→ q ⇔ p ≤ q

example: validity of while rule `MKA 〈x|pq ≤ q ⇒ 〈(px)∗¬p|q ≤ ¬pq

MKAs and Hoare Logic

benefits:

• weakest liberal precondition semantics for free in MKA (wlp(x, p) = |x]p)
• soundness and completeness of Hoare logic are easy in MKA
• formalism of Hoare logic is dissolved in modal setting
• relative completeness not an issue. . .

Propositional Hoare Logics

Hoare calculus: inference rules

• abort: |= {p} abort {q}

• skip: |= {p} skip {p}

• assignment: |= {q[e/x]} x := e {q}

• composition: |= {p} x {q}, {q} y {r} ⇒ {p} x ; y {r}

• conditional: |= {p ∧ q} x {r}, {¬p ∧ q} y {r} ⇒ {q} if p thenx else y {r}

• while: |= {p ∧ q} x {q} ⇒ {q} while p dox {¬p ∧ q}

• weakening: |= p1 → p, {p} x {q}, q → q1 ⇒ {p1} x {q1}

Soundness

Hoare calculus: coding validity in MKA

• abort: 〈0|p ≤ p

• skip: 〈1|p ≤ p

• assignment: expressiveness assumption

• composition: 〈x|p ≤ q, 〈y|q ≤ r ⇒ 〈xy|p ≤ r

• conditional: 〈x|(pq) ≤ r, 〈y|(¬pq) ≤ r ⇒ 〈px+ ¬py|q ≤ r

• while: 〈x|(pq) ≤ q ⇒ 〈(px)∗¬p|q ≤ ¬pq

• weakening: p1 ≤ p, 〈x|p ≤ q, q ≤ q1 ⇒ 〈x|p1 ≤ q1

Soundness

Hoare calculus: coding validity in operator Kleene algebra

• abort: 0 ≤ f

• skip: 1 ≤ 1

• assignment: expressiveness assumption

• composition: 〈xy| ≤ 〈y|〈x|

• conditional: 〈px+ ¬py| ≤ 〈x|〈p|+ 〈y|〈¬p|

• while: 〈x|〈p|f ≤ f ⇒ 〈(px)∗¬p|f ≤ 〈¬p|f

• weakening: f1 ≤ f, hf ≤ g, g ≤ g1 ⇒ hf1 ≤ g1

Soundness

Hoare calculus: inference rules are theorems in operator Kleene algebra

• abort: 0 ≤ f trivial

• skip: 1 ≤ 1 trivial

• assignment: expressiveness assumption

• composition: 〈xy| ≤ 〈y|〈x| contravariance

• conditional: 〈px+ ¬py| ≤ 〈x|〈p|+ 〈y|〈¬p| decomp., contravar.

• while: 〈x|〈p|f ≤ f ⇒ 〈(px)∗¬p|f ≤ 〈¬p|f next slide. . .

• weakening: f1 ≤ f, hf ≤ g, g ≤ g1 ⇒ hf1 ≤ g1 isotonicity

Soundness

proof of while-rule 〈x|〈p|f ≤ f ⇒ 〈(px)∗¬p|f ≤ 〈¬p|f

〈x|〈p|f ≤ f⇔ 〈px|f ≤ f (contravariance)

⇒ 〈(px)∗|f ≤ f (induction)

⇒ 〈¬p|〈(px)∗|f ≤ 〈¬p|f (isotonicity)

⇔ 〈(px∗)¬p|f ≤ 〈¬p|f (contravariance)

proposition: propositional Hoare logic is sound wrt algebraic semantics

Decidability

Hoare formulas: quasi-identities in modal Kleene algebra

〈x1|p1 ≤ q1, . . . , 〈xn|pn ≤ qn ⇒ 〈a0|p0 ≤ q0

decision procedure: (PSPACE)

1. demodalisation: rewrite as equivalent quasi-identity in Kleene algebra

p1x1¬q1 ≤ 0, . . . , pnxn¬qn ≤ 0⇒ p0x0¬q0 ≤ 0

2. hypothesis elimination: reduce to equivalent identity s′ ≤ t′
3. apply PSPACE decision procedure for equational theory

MKAs and Hoare Logic

perspective:

• full automation of Hoare logic seems possible
• assignment rule requires formalising substitution
• handling numbers or data types is so far difficult for ATP systems
• approach extends to total correctness

Divergence and Termination

∇-Kleene module: Kleene module (K,L, :) with divergence ∇ : K → L satisfying

• ∇-unfold x∇ ≤ xx∇
• ∇-coinduction p ≤ xp+ q ⇒ p ≤ x∇ + x∗q

remark: scalar product symbol omitted

interpretation:

1. for modal Kleene algebra, x∇ denotes those states from which
infinite behaviour may start

2. if K models finite actions and L infinite actions, then x∇ is
the infinite iteration of finite action x

Divergence and Termination

fact: if L is Boolean algebra, then ∇-coinduction is equivalent to

p ≤ xp⇒ p ≤ x∇

final part: maxx(p) = p− xp models final part of p w.r.t. x

termination: action x terminates if x∇ = 0

property: if L is Boolean algebra, then x terminates iff

maxx(p) = 0⇒ p = 0

remark: this captures set-theoretic notion of Noethericity

Divergence and Termination

trace model:

• let K be a trace Kleene algebra
• let L be a set of infinite traces under union
• define, for τ ∈ K and π ∈ L the scalar product τ : π like product of finite

traces
• lift that product to sets of traces
• define x∇ = {π ∈ L : π = τ0 · τ1 · . . . with τi ∈ K for i ≥ 0}

Then (K,L, :,∇) is a (full trace) ∇-Kleene module

special cases: path and language ∇-Kleene modules

consequence: ∇-Kleene modules useful for integrated finite/infinite behaviour

Divergence and Termination

fact: divergence and termination can be equationally axiomatised

• p ≤ x∇ + x∗maxx(p) is equivalent to ∇-coinduction
• p ≤ x∗maxx(p) is equivalent to termination

remark: L must be Boolean algebra

intuition: p either leads to divergence or to final states after a finite iteration

perspective:

• characterisation dual to Segerberg’s axiom
• equational approach to finite and infinite behaviours of

discrete dynamical systems
• very suitable for ATP systems (see below)

Domain on Sub-Semirings

near-semiring: structure (S,+, ·) such that

• (S,+) and (S, ·) are semigroups
• right distributivity law (x+ y)z = xz + yz holds

pre-semiring: left pre-isotone near-semiring x+ y = y ⇒ zx+ zy = zy

units: 0, 1 or

• deadlock x+ δ = x δx = δ.
• silent action xτ = x

Domain on Sub-Semirings

basic process algebra: idempotent near-semiring (S,+, ·, ∗) or (S,+, ·, ∗, δ, τ)

game algebra: idempotent pre-semiring (S,+, ·, 0, 1)

probabilistic Kleene algebra: idempotent pre-semiring (S,+, ·, ∗, 0, 1)

demonic refinement algebra: idempotent semiring (S,+, ·, ∗,∞, δ, 1)

Domain on Sub-Semirings

NSτδ NS1
δ PS1

δ

a(x)x = δ
√ √

a(xy) ≤ a(xa2(y))
√ √

a2(x) + a(x) = 1
√ √ √

a(x+ y) = a(x)a(y)
√

x = d(x)x
√

d(xy) = d(xd(y))
√

d(x+ y) = d(x) + d(y)
√

d(δ) = δ
√

d(x)d(y) = d(y)d(x)
√

d(a(x)) = a(x)
√

NS: near-semiring, PS: pre-semiring

Domain on Sub-Semirings

conclusion:

• domain can still be defined on sub-semirings
• this models enabledness conditions for games, processes and actions

in protocols
• semiring domain axioms suffice for probabilistic Kleene algebras

and demonic refinement algebras
• domain does not induce modal operators

Automation Examples

observation: ATP systems have rather been neglected in formal methods

idea: combine MKAs with ATPs and counter example generators

results: experiments with various ATPs (Prover9, SPASS, Waldmeister,. . .)

• ∼ 500 theorems automatically proved
• successful case studies in program refinement, termination, . . . analysis

benefits:

• special-purpose calculi made redundant
• generic flexible library of lemmas
• new style of verification

Automating Bachmair and Dershowitz’s Termination Theorem

theorem: [BachmairDershowitz86] termination of the union of two rewrite
systems can be separated into termination of the individual systems
if one rewrite system quasicommutes over the other

formalisation: ∇-Kleene module over semilattice

encoding:

• quasicommutation yx ≤ x(x+ y)∗

• separation of termination (x+ y)∇ = 0⇔ x∇ + y∇ = 0

statement: termination of x and y can be separated if x quasicommutes over y

remark: posed as challenge by Ernie Cohen in 2001

Automating Bachmair and Dershowitz’s Termination Theorem

results: SPASS finds an extremely short proof in < 5min

(x+ y)∇= y∇ + y∗x(x+ y)∇ (sum unfold)

≤ y∇ + x(x+ y)∗(x+ y)∇ (strong quasicommmutation)

= y∇ + x(x+ y)∇ (since zω = z∗zω)

≤ x∇ + x∗y∇ (coinduction)

= 0 (assumption x∇ = y∇ = 0)

Automating Bachmair and Dershowitz’s Termination Theorem

surprise: proof reveals new refinement law

yx ≤ x(x+ y)∗ ⇒ (x+ y)∇ = x∇ + x∗y∇

for separating infinite loops

remarks:

• reasoning essentially coinductive
• theorem holds in large class of models
• translation safe since relations form ∇-Kleene modules

Automating the DBW-Theorem

lazy commutation: yx ≤ x(x+ y)∗ + y

theorem: [Doornbos/Backhouse/van der Woude]
if x lazily commutes over y then termination of x and y can be separated

comment: this generalisation is much more difficult

lemma: x lazily commutes over y iff

yx∗ ≤ x(x+ y)∗ + y

proof: 44.23s by Prover9.

Automating the DBW-Theorem

proof: (non-trivial direction of DBW-theorem)

1. abbreviate ∇ = (x+ y)∇

2. assume that x and y terminate
3. for ∇ = 0 it suffices to show maxy(maxx(∇)) = 0
4. this is equivalent to maxx(∇) ≤ ymaxx(∇)
5. we calculate

∇= x∇+ y∇≤ x∇+ yx∗maxx(∇)≤ x∇+ x(x+ y)∗maxx(∇) + ymaxx(∇)

≤ x∇+ x(x+ y)∗∇+ ymaxx(∇)= x∇+ ymaxx(∇)

6. the claim now follows from the Galois connection for complementation and
the definition of maxx

remark: the second step uses the equational characterisation of termination

Automating the DBW-Theorem

remarks:

• proof is much more compact than previous approaches
• for the first time in first-order setting
• theorem holds again in large model class
• main calculation could again be automated
• full automation remains a challenge

Automating a Modal Correspondence Result

modal logic: Löb’s formula 2(2p→ p)→ 2p

translation to MKA/Kleene modules: xp ≤ x(p− xp) = xmaxx(p)

intuition: all states with transitions into p are states from which no further
transitions are possible

remark: this would correspond to Noethericity if x is transitive (xx ≤ x)

reminder: two equivalent characterisations of Noethericity

• p ≤ x∗maxx(p) (x pre-Löbian)
• maxx(p) = 0⇒ p = 0 (x Noetherian)

Automating a Modal Correspondence Result

property: for every x in some ∇-Kleene module

(i) x Löbian ⇒ x Noetherian
(ii) x Noetherian ⇔ x pre-Löbian (see above)
(iii) x pre-Löbian and x = xx ⇒ x Löbian

proofs: with Prover9 in ∇-Kleene algebra

(i) ≤ 4s
(ii) ≤ 4s and ≤ 20s (hypothesis learning)
(iii) ≤ 1s (hypothesis learning)

remark: this is a modal correspondence result

• Noethericity corresponds to frame property
• proof is calculational and automated
• model theory is normally used

Automating Hoare Logic

algorithm: integer division n/m

fun DIV = k:=0;l:=n;

while m<=l do k:=k+1;l:=l-m;

precondition: 0 ≤ n

postconditions: n = km+ l 0 ≤ l l < m

proof goal: 〈x1x2(ry1y2)∗¬r|p ≤ q1q2¬r

Automating Hoare Logic

proof: two phases coupled by assignment rule p[e/x] ≤ |{x := e}]p
1. MKA: goal follows from p ≤ |x1]|x2](q1q2) q1q2r ≤ |y1]|y2](q1q2)

(automated with Prover9)
2. arithmetics: subgoals must still be manually verified, e.g.,

|x1]|x2](q1q2)= |{k := 0}] |{l := n}](q1q2)≥ ({n = km+ l}{0 ≤ l})[k/0][l/n]

= {n = 0m+ n}{0 ≤ n}= {0 ≤ n}

= p

remark:

• reasoning essentially inductive
• domain specific solvers should be integrated into ATPs
• try SPASS+T?

Newman’s Lemma: A Proof Challenge

Newman’s lemma: A term rewriting system is confluent if it is locally confluent
and terminating.

generalisation and translation:

• x commutes over y y∗x∗ ≤ x∗y∗
• x locally commutes over y yx ≤ x∗y∗

theorem: In ∇-Kleene algebra, if x+ y terminates and x locally commutes over
y, then x commutes over y

Newman’s Lemma: A Proof Challenge

proof: (so far)

• one page of semi-calculational arguments
• main calculation

〈y∗|〈y|〈p〉|x〉|x∗〉≤ 〈y∗|〈py〉〈y||x〉〈px〉|x∗〉
≤ 〈y∗|〈py〉|x∗〉〈y∗|〈px〉|x∗〉
≤ 〈y∗|〈py〉|x∗〉|x∗〉〈y∗|
≤ 〈y∗|〈py〉|x∗〉〈y∗|
≤ |x∗〉〈y∗|〈y∗|
≤ |x∗〉〈y∗|

• px = 〈x|p and py = 〈y|p
• proof lifted to level of modal operators

Newman’s Lemma: A Proof Challenge

question: can you automate this?

remarks:

• Newman’s lemma seems to require a mix of inductive and coinductive
reasoning
• the main calculation mimics precisely the traditional diagrammatic proof
• more generally, Kleene algebras give an algebraic semantics to (some)

rewrite diagrams

A Non-Modal Example: Back’s Atomicity Refinement Law

demonic refinement algebra: [von Wright04] Kleene algebra

• with axiom x0 = 0 dropped
• extended by strong iteration ∞ encompassing finite and infinite iteration

remark: abstracted from refinement calculus [BackvonWright]

atomicity refinement law for action systems

• complex theorem first published by Back in 1989
• long proof in set theory analysing infinite sequences
• proof by hand in demonic refinement algebra still covers 2 pages
• automated analysis reveals some glitches and yields generalisation

first task: build up library of verified basic refinement laws for proof

A Non-Modal Example: Back’s Atomicity Refinement Law

theorem: if (i) s ≤ sq (ii) a ≤ qa (iii) qb = 0 (iv) rb ≤ br
(v) (a+ r + b)l ≤ l(a+ r + b) (vi) rq ≤ qr (vii) ql ≤ lq
(viii) r∗ = r∞ (ix) q ≤ 1

then
s(a+ r + b+ l)∞q ≤ s(ab∞q + r + l)∞

two-step proof with “hypothesis learning”

1. assumptions imply s(a+ r + b+ l)∞q ≤ sl∞qr∞q(ab∞qr∞)∞

wait 60s for 75-step proof with Prover9
2. q ≤ 1 implies sl∞qr∞q(ab∞qr∞)∞ ≤ s(ab∞q + r + l)∞

wait < 1s for 30-step proof

remark: full proof succeeds for l = 0 (1013s for 46-step proof)

A Non-Modal Example: Back’s Atomicity Refinement Law

equational proof can be reconstructed

s(a+ b+ r + l)q= sl
∞

(a+ b+ r)
∞
q

= sl
∞

(b+ r)
∞

(a(b+ r)
∞

)
∞
q

= sl
∞
b
∞
r
∞

(ab
∞
r
∞

)
∞
q

≤ sl∞b∞r∞(qab
∞
r
∞

)
∞
q

= sl
∞
b
∞
r
∞
q(ab

∞
r
∞
q)
∞

≤ sql∞b∞r∞q(ab∞r∞q)∞

≤ sl∞qb∞r∞q(ab∞r∞q)∞

≤ sl∞qr∞q(ab∞r∞q)∞

= sl
∞
qr
∞
q(ab

∞
r
∗
q)
∞

≤ sl∞qr∞q(ab∞qr∗)∞

= sl
∞
qr
∞
q(ab

∞
qr
∞

)
∞
.

ATP Background

Ordered resolution: for φ maximal wrt syntactic ordering ≺ on terms/literals

Γ→ ∆, φ Γ′, φ→ ∆′

Γ,Γ′ → ∆,∆′
Γ→ ∆, φ, φ

Γ→ ∆, φ

Redundancy: clause is ≺-redundant wrt clause set S if it is entailed by
≺-smaller instances of clauses from S

Orb: clause set closed under ordered resolution and redundancy elimination

Refutational completeness: orb of inconsistent clause set contains empty clause

remark: unification used at first-order level

ATP Background

strategy:

• transform first-oder formulas into clause set
• close working set under deduction rules
• apply deduction rules lazily
• apply redundancy elimination rules eagerly
• procedure must be fair with respect to clauses

ATP systems used:

• Prover9 and Vampire: fastest provers for algebraic theories
• Waldmeister: fastest tool for unit equations
• SPASS: ATP in sorted/typed setting

Conclusion

these lectures: modal Kleene algebras offer

• simple equational calculus including some (co)induction
• rich model class (traces, paths, languages, relations, functions,. . .)
• easy automation
• interesting applications in program analysis/verification
• relevant for modelling discrete dynamical systems

related work:

• automation of relation algebras similarly successful
• code at www.dcs.shef.ac.uk/∼georg/ka
• results will be integrated into TPTP library

Conclusion

general conclusion: ATP systems + computational algebras motivates

verification challenge

• off-the-shelf ATP with domain-specific algebras
• promising alternative to conventional approaches (model checking, HOL)
• light-weight formal methods with heavy-weight automation

Seek Simplicity and Distrust It.
[Whitehead]

Some References on Modal Kleene Algebras

1. Prover9 and Mace4, http://www.cs.unm.edu/∼mccune/prover9.

2. Spass 3.0, http://spass.mpi-inf.mpg.de/.

3. G. Struth. Modal Tools for Separation and Refinement Technical Report CS-08-07, Department

of Computer Science; University of Sheffield, 2008.

4. J. Desharnais and G. Struth. Enabledness Conditions for Action Systems, Probabilistic Systems,

and Processes Technical Report CS-08-06, Department of Computer Science; University of

Sheffield, 2008.

5. J. Desharnais and G. Struth. Modal Semirings Revisited. (Accepted for MPC 2008).

6. B. Möller. Kleene getting lazy. Science of Computer Programming, 65(2):195–214, 2007.

7. L. Meinicke and K. Solin. Refinement algebra for probabilistic programs. In E. Boiten, J. Derrick,

and G. Smith, editors, Refine 2007, ENTCS, 2007. To appear.

8. G. Struth. Reasoning Automatically about Termination and Refinement. In S. Ranise, editor,

6th International Workshop on First-Order Theorem Proving, Technical Report ULCS-07-018,

Department of Computer Science, University of Liverpool, pages 36–51. 2007.

9. P. Höfner and G. Struth. Automated Deduction in Kleene Algebra. In P. Pfenning, editor, 21th

International Conference on Automated Deduction (CADE21), volume 4603 of LNAI, pages

279–294. Springer, 2007.

10. J.-L. De Carufel and J. Desharnais. Demonic algebra with domain. In R. A. Schmidt, editor,

Relations and Kleene Algebras in Computer Science, volume 4136 of LNCS, pages 120–134.

Springer, 2006.

11. K. Solin and J. von Wright. Refinement algebra with operators for enabledness and termination.

In T. Uustalu, editor, Mathematics of Program Construction, volume 4014 of LNCS, pages

397–415. Springer, 2006.

12. P. Höfner, B. Möller and G. Struth. Quantales and temporal logics. In M. Johnson and V.

Vene, editors, Algebraic Methodology and Software Technology, 11th International Conference,

volume 4019 of LNCS, pages 262–277. Springer, 2006.

13. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. ACM Transations on

Computational Logic, 7(4):798–833, 2006.

14. B. Möller, and G. Struth. Algebras of modal operators and partial correctness. Theoretical

Computer Science, 351(2):221–239, 2006.

15. B. Möller and G. Struth. wp is wlp. In I. Düntsch, W. MacCaull and M. Winter, editors,

Relational Methods in Computer Science, volume 3929 of LNCS, pages 200–211. Springer,

2005.

16. J. Desharnais, B. Möller, and G. Struth. Modal Kleene algebra and applications—a survey.

Journal on Relational Methods in Computer Science, 1:93–131, 2004.(Invited contribution).

17. J. Desharnais, B. Möller, and G. Struth. Termination in modal Kleene algebra. In Jean-Jacques

Lévy, Ernst W. Mayr, and John C. Mitchell, editors, IFIP TCS2004, pages 647–660. Kluwer,

2004. Revised version: Algebraic Notions of Termination. Technical Report 2006-23, Institut

für Informatik, Universität Augsburg, 2006.

