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Motivation

program/system analysis requires formalisms that balance

• expressive interoperable modelling languages
• powerful proof procedures

modelling languages: e.g.

• relations used in Z or B
• functions/quantales used in refinement calculi
• modal logics/process algebras used for reactive/concurrent systems

proof procedures dominated by

• interactive proof checking
• model checking



Motivation

questions: are there formalisms that offer better balance

• unify/integrate relational, functional, modal reasoning?
• allow using off-the-shelf automated theorem provers (ATP systems)?



Motivation

questions: are there formalisms that offer better balance

• unify/integrate relational, functional, modal reasoning?
• allow using off-the-shelf automated theorem provers (ATP systems)?

answer: algebraic methods, in particular modal Kleene algebras (maybe)

benefits of algebraic approach:

• simple first-order equational calculi
• rich class of computationally meaningful models
• mechanisms for abstraction and (de)composition
• suitable for ATP systems



This Lecture Series

goal: introduce modal Kleene algebras as computational tools
for modelling and analysing discrete dynamical systems

outline:

1. surveys foundations of (modal) Kleene algebras
2. discusses some computationally interesting models
3. sketches connection with popular computational logics
4. presents some (automation) examples

dual rôle of ATP: a new approach to

• computer mathematics: develop/analyse algebraic structures
• formal methods: develop/analyse programs and systems

apology: highly subjective and incomplete picture



Semirings, Actions and Propositions

semiring: (S,+, ·, 0, 1) “ring without minus”

x+ (y + z)= (x+ y) + z x+ y= y + x x+ 0= x

x(yz)= (xy)z x1= x 1x= x

x(y + z)= xy + xz (x+ y)z= xz + yz

x0= 0 0x= 0

interpretation: S represents actions of some discrete dynamical system

• + models nondeterministic (angelic) choice (cf. next slide)
• · models sequential composition
• 0 models abortive action
• 1 models ineffective action



Semirings, Actions and Propositions

remarks:

• swapping multiplication yields opposite semiring
• semiring is idempotent if x+ x = x
• idempotent semirings are naturally ordered by x ≤ y ⇔ x+ y = y

hence (S,+, 0) is upper semilattice with least element 0
• idempotency turns addition into choice

questions:

• how can the state space of the system be included?
• how can the “limit behaviour” of the system be described?



Semirings, Actions and Propositions

task: include the state space

test algebras: [ManesArbib] “Boolean centre”

• Boolean subalgebra (test(S),+, ·,¬, 0, 1) embedded into [0, 1] of S
• + coincides with Boolean join
• · coincides with Boolean meet

remarks:

• Boolean algebra test(S) captures the main intuition behind state spaces
• elements of test(S) are sets of states
• alternative interpretations as propositions of a system or tests of a program

notation: x, y, z . . . for actions; p, q, r, . . . for tests/propositions



Kleene Algebras

task: describe “limit behaviour”

Kleene algebras: [Kozen] idempotent semiring with star satisfying

• unfold axiom 1 + xx∗ ≤ x∗
• induction axiom y + xz ≤ z ⇒ x∗y ≤ z
• and their opposites

1 + x∗x ≤ x∗ y + zx ≤ z ⇒ yx∗ ≤ z



Models of Kleene Algebra

Boolean semiring: structure A2 = ({0, 1},+, ·, ∗, 0, 1) with operations

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

0∗ = 1∗ = 1.

question: can you give the test algebra?



Models of Kleene Algebra

binary relation: set of ordered pairs on set M

R = {(a, b) : a, b ∈M}

operations:

• empty relation: ∅ (the empty set)
• unit relation: ∆ = {(a, a) : a ∈M}
• union: R ∪ S = {(a, b) : (a, b) ∈ R or (a, b) ∈ S}
• product: R ◦ S = {(a, b) : (a, c) ∈ R and (c, b) ∈ S for some c ∈M}
• star: R∗ =

⋃
i≥0R

i where R0 = ∆ and Ri+1 = R ◦Ri for all i ∈ N

remark: R∗ corresponds to the reflexive transitive closure of R



Models of Kleene Algebra

fact: (2M×M ,∪, ◦, ∗, ∅,∆) is a Kleene algebra, the full relation Kleene algebra
over M

proof: check that relations satisfy Kleene algebra axioms. . .

fact: every subalgebra of a full relation Kleene algebra is again a Kleene algebra;
a relation Kleene algebra

proof:

• logically, Kleene algebras are universal Horn theories
• a general theorem of universal algebra says that universal Horn theories

are closed under subalgebras



Models of Kleene Algebra

question: can you define the test algebra of a relation Kleene algebra?

remarks:

• binary relations yield a standard semantics for (imperative) programs
• they model their input/output behaviour with respect to stores
• they capture nondeterminism and are very useful for specifications

(even for functional programs)
• we will consider this semantics more abstractly below



Models of Kleene Algebra

question: the operations of Kleene algebras are precisely the regular operations;
is there any connection with language theory?

words are finite sequences over a (finite) alphabet Σ

languages are sets of words

operations:

• empty language: ∅ (empty set)
• unit language: {ε} with empty word ε
• union: L1 ∪ L2 as in set theory
• product: L1 ◦ L2 = {w1w2 : w1 ∈ L1 and w2 ∈ L2}
• star: L∗ = {w1w2 . . . wn : wi ∈ L and n ≥ 0}



Models of Kleene Algebra

fact: (2Σ∗,∪, ◦, ∗, ∅, {ε}) is a Kleene algebra, the full language Kleene algebra
over M

fact: every subalgebra of a full language Kleene algebra is again a Kleene algebra;
a language Kleene algebra

regular subsets/events: obtained from finite subsets of Σ∗ by finite number
of regular operations

consequence: strong link between Kleene algebras and regular languages



Models of Kleene Algebra

slogan: Kleene algebras are algebras of regular events

• Kozen has shown that an equation holds in Kleene algebras
iff it holds about regular events/expressions
• mathematically, the algebra of regular events over Σ

is the free Kleene algebra generated by Σ

consequence: equations in Kleene algebras can be decided by automata

remarks:

• this correspondence motivates the name “Kleene algebra”
• universal Horn theory of Kleene algebras is undecidable (Post)
• there is no finite equational axiomatisation for the equational theory

of regular events



Models of Kleene Algebra

paths: finite sequences of states from P ; empty path ε

path product: glue paths together

σ.p · p.σ′ = σ.p.σ′ σ.p · q.σ′ undefined

operations on sets of paths:

• P1 ◦ P2 = {π1 · π2 : π1 ∈ P1, π2 ∈ P2 and π1 · π2 defined}
• other operations as usual (what is multiplicative unit?)

consequence: sets of paths form path Kleene algebras



Models of Kleene Algebra

trace: alternating sequence p0a0p1a1p2 . . . pn−2an−1pn−1, pi ∈ P , ai ∈ A

trace product: σ.p · p.σ′ = σ.p.σ′ σ.p · q.σ′ undefined

operations on sets of traces:

• T1 ◦ T2= {τ1 · τ2 : τ1 ∈ T1, τ2 ∈ T2 and τ1 · τ2 defined}
• other operations as usual (what is multiplicative unit?)

consequence: sets of traces form trace Kleene algebras



Relationship Between Models

special cases: essentially by forgetting structure in trace MKA

• path/language Kleene algebras forget actions/propositions
• relation Kleene algebras forget sequences between endpoints

property: (equational) properties are inherited by (relations), paths, languages

remark:

• traces, paths, languages, relations are computationally interesting models
• Kleene algebras are applicable in interoperable contexts



Further Models

matrix model: consider n× n matrices over Kleene algebra

• 0 and 1 are zero and unit matrix
• + and · are standard matrix addition and multiplication
• star defined by partitioning a non-singleton matrix into submatrices a, b, c, d,

with a and d square, and setting(
a b
c d

)∗
=

(
f∗ f∗bd∗

d∗cf∗ d∗ + d∗cf∗bd∗

)
where f = a+ bd∗c

fact: matrices over Kleene algebras form Kleene algebras



Digression: Automata, Algebraically

finite automaton: [Conway] (u,A, v) with

• u 0-1 vector of start states
• v 0-1 vector of accepting states
• A transition matrix over Kleene algebra

language accepted by automaton is element uTA∗v of Kleene algebra

simple automaton: transition matrix of form

A = J +
∑
a∈Σ

a ·Aa

for 0-1 matrices J (ε-matrix) and Aa

fact: automata theory can be developed from this angle



Digression: Automata, Algebraically

example: consider automaton with states {p, q}, alphabet {a, b}, start state p,
accept state q, and transitions

p→a p q →a q p→b q q →b q

algebraic automaton: ((
1
0

)
,

(
a b
0 a+ b

)
,

(
0
1

))

language accepted:

(
1 0

)
·
(
a b
0 a+ b

)∗
·
(

0
1

)
=
(

1 0
)
·
(
a∗ a∗b(a+ b)∗

0 (a+ b)∗

)
·
(

0
1

)
= a∗b(a+ b)∗



Further Models

tropical semiring: (N∞,min,+,∞, 0, ∗) is Kleene algebra if n∗ = 0 for all n ∈ N∞

applications:

• combinatorial optimisation
• path problems (encoded via matrices)
• rich mathematical theory

remark: this area alone would deserve a lecture series. . .

remark: max-plus semiring on N−∞ cannot be extended to a Kleene algebra



Kleene Algebras and Regular Programs

fact: KAs capture while-programs/guarded commands in various semantics

abort= 0

skip= 1

x; y= xy

if p then x else y = px+ ¬py
while p do x = (px)∗¬p

remarks:

• the usual semantic mappings have been suppressed
• the assignment rule cannot be modelled in this setting
• it can be modelled in an extension formalising substitution



Calculus of Kleene Algebras

rich calculus: all regular identities hold in Kleene algebras. e.g.,

1 ≤ x∗ x ≤ x∗ xx∗ ≤ x∗ x∗x ≤ x∗ 1 + xx∗ = x∗ 1 + x∗x = x∗

x∗x∗ = x∗ x∗∗ = x∗ (xy)∗x = x(yx)∗ (x+ y)∗ = x∗(yx∗)∗

some quasi-identities:

x ≤ y ⇒ xz ≤ yz x ≤ y ⇒ zx ≤ zy
x ≤ y ⇒ x+ z ≤ y + z x ≤ y ⇒ x∗ ≤ y∗

x ≤ 1⇒ x∗ = 1 x ≤ y ⇒ x∗ ≤ y∗

xz ≤ zy ⇒ x∗z ≤ zy∗ zx ≤ yz ⇒ zx∗ ≤ y∗z
xy ≤ y ⇒ x∗y ≤ y yx ≤ y ⇒ yx∗ ≤ y

more results: www.dcs.shef.ac.uk/∼georg/ka



Example: Church-Rosser Theorem and Concurrency Control

abstract reduction: rewrite relations as binary relations

Church-Rosser theorem: y∗x∗ ≤ x∗y∗ ⇒ (x+ y)∗ ≤ x∗y∗

proof:

• (x+ y)∗ = (y∗x∗)∗ is regular identity
• it suffices to show y∗x∗ ≤ x∗y∗ ⇒ (y∗x∗)∗ ≤ x∗y∗

(induction over number of peaks)
• by star induction it suffices to show 1 + y∗x∗x∗y∗ ≤ x∗y∗
• this splits into 1 ≤ x∗y∗ and y∗x∗x∗y∗ ≤ x∗y∗
• the first identity (base case) is trivial
• for the second one (induction step) we calculate

y∗x∗x∗y∗ = y∗x∗y∗ ≤ x∗y∗y∗ = x∗y∗



Example: Church-Rosser Theorem and Concurrency Control

discussion:

• induction on number of peaks without external induction measure
• in concurrency control (x+ y)∗ corresponds to nondeterministic loop
• this loop can be separated if y∗x∗ sequences can be rearranged
• theorem holds also in trace, path and language model

outlook:

• abstract part of Church-Rosser theorem in λ-calculus can be proved
in a similar way
• many other rewrite theorems can be proved as well

further application: transformation of while programs



General Remarks on Kleene Algebras

conclusion: Kleene algebras

• focus on the essential operations for modelling programs and discrete systems
• support abstract and concise reasoning within first-order logic
• have rich class of computationally meaningful models
• are strongly linked with decision procedures
• can be integrated with ATP systems (later. . . )

remark: induction axiom y + xz ≤ z ⇒ x∗y ≤ z and dual

• provide star elimination rules
• support some inductive reasoning
• we will see further examples later



General Remarks on Kleene Algebras

variations: (see below) by weakening some axioms

• demonic refinement algebras for reasoning about total program correctness in
predicate transformer models
• probabilistic Kleene algebras for analysing

probabilistic protocols via probability transformers
• game algebras that capture combined angelic and demonic behaviour

of agents via gameboard semantics
• basic process algebras

limitations:

• terminating and diverging behaviour cannot be expressed
• “nonregular” induction is not possible
• reasoning about concrete applications is model-sensitive



Adding Modalities

motivation:

• many applications require different approach to actions/propositions
• systems dynamics is often modelled via state transitions;

i.e. mappings from states to states
• various logics “use” Kleene algebras, but what is the precise connection?

idea: modal approach

• actions/propositions via Kripke frames
• system dynamics via images/preimages 〈x|p / |x〉p
• preimages via axiomatisation of domain
• images via axiomatisation of codomain



State Transitions

express: “terminating program a starting from store p creates store q”

p

q

pa

aq

¬q

¬q

in idempotent semiring: pa ≤ aq or equivalently pa¬q = 0



State Transitions

proof of equivalence

p

q

pa

aq

¬q

¬q

pa = pa(q + ¬q) = paq + pa¬q = paq + 0 ≤ aq pa¬q ≤ aq¬q = a0 = 0



State Transitions

alternative: “q contains a-image of p”

p

qa

<a|p

question: how can we model images/preimages directly in idempotent semirings?



Image

relational model: complement of image of set p under relation a
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<a|p

is greatest set that does not admit an a-transition from p



Domain on Trace, Path, Language and Relation Semirings

intuition:

• relation semiring: d(R) = {a : (a, b) ∈ R}
• trace semiring: d(T ) = {p : p = first(τ) and τ ∈ T}
• path semiring: analogous
• language semiring: d(∅) = ∅ and d(L) = {ε} else



general idea:

• domain as mapping d : S → S on semiring S
• d(x) models states at which action x is enabled
• d(x) should be

– ≤ 1
– least left preserver of x: x ≤ px⇔ d(x) ≤ p
• equational axioms would be nice



Domain Semirings

general idea:

• axiomatise domain as mapping d : S → S on semiring S

• d(x) models states at which action x is enabled

• d(x) should be
– ≤ 1
– least left preserver of x: x ≤ px⇔ d(x) ≤ p

where px models restriction of action x to states in p
• equational axioms would be nice

question: what would be the type of p?



Domain Semirings

domain semiring: semiring with mapping d : S → S that satisfies

x+ d(x)x= d(x)x d(xy)= d(xd(y)) d(x+ y)= d(x) + d(y)

d(x) + 1= 1 d(0)= 0

some intuition:

• axiom 1: x ≤ d(x)x means that domain is a left preserver
• axiom 2: d(xy) is local on y through its domain
• axiom 3: enabling a choice means enabling one alternative or the other
• axiom 4: domain is smaller than 1 (cf. next slide)
• axiom 5: the abortive action is never enabled



Domain Semirings

property: every domain semiring is automatically idempotent

further properties: the axioms

• are irredundant (use model generator Mace4)
• cannot be weakened to inequalities (Mace4)
• imply least left preservation
• imply many “natural properties” (cf. next slides)

domain elements: d(x) = x says “x is domain element”



Properties of Domain

fact: Let S be a domain semiring. Let x, y ∈ S and let p ∈ d(S). Then

• d(x)x = x (domain is a left invariant)
• d(p) = p (domain is a projection)
• d(xy) ≤ d(x) (domain increases for prefixes)
• x ≤ 1⇒ x ≤ d(x) (domain expands subidentities)
• d(x) = 0⇔ x = 0 (domain is very strict)
• d(1) = 1 (domain is co-strict)
• x ≤ y ⇒ d(x) ≤ d(y) (domain is isotone)
• d(px) = pd(x) (domain elements can be exported)
• d(x)d(x) = d(x) (domain elements are multiplicatively idempotent)
• d(x)d(y) = d(y)d(x) (domain elements commute)
• x ≤ px⇔ d(x) ≤ p (domain elements are least left-preservers)
• xy = 0⇔ xd(y) = 0 (domain is weakly local)



Domain Algebra

question: how can we relate domain elements with tests?

property: for every domain semiring S, the sub-structure (d(S),+, ·, 0, 1)
is a bounded distributive lattice

proof: (with ATP)

1. check closure properties, d(1) = 1 and d(0) = 0
2. this gives sub-semiring
3. d(x) ≤ 1 is axiom and d(x)d(x) = d(x)
4. but semirings satisfying these two properties are distributive lattices [Birkhoff]

notation:

• (d(S),+, ·, 0, 1) is called domain algebra of S
• p, q, r . . . for domain elements



Domain Algebra

question: how can we enrich the domain algebra?

answer: (examples)

1. Heyting algebra: add Galois connection (and closure condition for →)

pq ≤ r ⇔ p ≤ q → r

2. Boolean algebra: add antidomain operation a : S → S with axioms

d(x) + a(x) = 1 d(x)a(x) = 0



Boolean Domain Algebra

assume: semiring that satisfies the domain/antidomain axioms

consequence: d(S) is the largest Boolean subalgebra of S, so

d(S) = test(S)

properties: (ATP)

• a2(x) = d(x)
• a(x) is greatest left annihilator of x: px = 0⇔ p ≤ a(x)

consequence:

• d can be replaced by a2

• many domain/antidomain axioms become redundant
• axiomatisation can be simplified
• this yields. . .



Boolean Domain Semirings

Boolean domain semiring: semiring S with mapping a : S → S that satisfies

a(x)x= 0 a(xy)≤ a(xa2(y)) a2(x) + a(x)= 1

remarks:

• ATP/model search is very helpful in this development
• simple axioms induce rich modal calculus. . .



Modal Semirings

idea: define forward/backward diamonds as preimages/images

|x〉p = d(xp) 〈x|p = d◦(px)

where codomain operation d◦ is dual of domain

consequence:

• we have |x〉0 = 0 and |x〉(p+ q) = |x〉p+ |x〉q
• this yields

– distributive lattices with operators
– Heyting algebras with operators
– Boolean algebras with operators

convention: we will call KAs with Boolean domain modal KAs (MKAs)



Modalities, Symmetries, Dualities for Boolean Domain

demodalisation: |x〉p ≤ q ⇔ ¬qxp ≤ 0 〈x|p ≤ q ⇔ px¬q ≤ 0

dualities:

• de Morgan: |x]p = ¬|x〉¬p [x|p = ¬〈x|¬p
• opposition: 〈x|, [x| ⇔ |x〉, |x]

symmetries:

• conjugation: (|x〉p)q = 0⇔ p(〈x|q) = 0
• Galois connection: |x〉p ≤ q ⇔ p ≤ [x|q

benefits: rich calculus (automatically verified)

• symmetries as theorem generators
• dualities as theorem transformers



Kleene Modules

Kleene module: [Leiß06] structure (K,L, :) with

(x+ y)p= xp+ yp x(p+ q)= xp+ xq (xy)p= x(yp)

1p= p x0= 0 xp+ q ≤ p⇒ x∗q ≤ p

remark: scalar product : omitted

fact: modal Kleene algebras are Kleene modules with : = λxλp.|x〉p

consequence: close relationship with computational logics



MKAs and Propositional Dynamic Logic

fact: MKAs are dynamic/test algebras

proof:

• dynamic algebras are almost Kleene modules
• main task is to show equivalence of

– module induction law |x〉p+ q ≤ p⇒ |x∗〉q ≤ p
– Segerberg axiom |x∗〉p− p ≤ |x∗〉(|x〉p− p)

extensionality: (∀p.|x〉p = |y〉p)⇒ x = y

intuition: extensionality forces Kripke-style models

corollary: extensional MKAs are essentially propositional dynamic logics



MKAs and Propositional Dynamic Logic

benefits: MKA offers

• simpler/more modular axioms
• richer model class (beyond Kripke frames)
• more flexible setting

perspective:

• simple automated reasoning about programs and systems
with off-the-shelf ATP systems
• easily extendable to the automation of first-order variants, e.g.,

∃x∀p∃q.(|x〉f(p) ≤ |x〉g(q)→ |x]h(p, q) = 0)

• some temporal logics and Hoare logics subsumed



MKAs and Linear Temporal Logic

encoding:

• temporal operators (use one single action x)

Xp = |x〉p Fp = |x∗〉p Gp = |x∗]p pUq = |(px)∗〉q

• initial state initx = [x|0 “there’s nothing before the beginning”
• validity of temporal implications σ |= p→ q ⇔ initx · p = q
• tests now model sets of traces and x models the abstract tail relation



MKAs and Linear Temporal Logic

LTL axioms: von Karger’s variant of [Manna/Pnueli]

|(px)∗〉q = q + p|x〉|(px)∗〉q 〈(xp)∗|q = q + p〈(xp)∗|〈x|q
|(px)∗〉0 ≤ 0 〈x|0 = 1

|x∗](p→ q) ≤ |x∗]p→ |x∗]q [x∗|(p→ q) ≤ [x∗|p→ [x∗|q
|x∗]p ≤ p|x]|x∗]p |x∗](p→ |x]p) ≤ |x∗](p→ |x∗]p)

p ≤ [x||x〉p p ≤ |x]〈x|p
initx ≤ |x∗](p→ [x|q)→ |x∗](p→ [x∗|q) initx ≤ |x∗]p→ |x∗][x|p

|x](p→ q) = |x]p→ |x]q [x|(p→ q) = [x|p→ [x|q
〈x|p ≤ [x|p |x〉p = |x]p



MKAs and Linear Temporal Logic

fact:

1. blue axioms are theorems of MKA
2. violet axioms express linearity of models (in MKA)

benefits:

• reasoning about infinite-state systems possible
• first-order temporal reasoning
• trace model available

remark:

• CTL also subsumed
• CTL∗ needs additional fixed points (and quantale-based setting)



MKAs and Hoare Logic

fact: MKA subsumes (propositional) Hoare logic

explanation: this is Hoare logic without the assignment rule

convention: Kleenean notation for syntax and semantics

validity of Hoare triple: |= {p} x {q} ⇔ 〈x|p ≤ q

“terminating program x starting from store p creates store q”

validity of implication: |= p→ q ⇔ p ≤ q

example: validity of while rule `MKA 〈x|pq ≤ q ⇒ 〈(px)∗¬p|q ≤ ¬pq



MKAs and Hoare Logic

benefits:

• weakest liberal precondition semantics for free in MKA (wlp(x, p) = |x]p)
• soundness and completeness of Hoare logic are easy in MKA
• formalism of Hoare logic is dissolved in modal setting
• relative completeness not an issue. . .



Propositional Hoare Logics

Hoare calculus: inference rules

• abort: |= {p} abort {q}

• skip: |= {p} skip {p}

• assignment: |= {q[e/x]} x := e {q}

• composition: |= {p} x {q}, {q} y {r} ⇒ {p} x ; y {r}

• conditional: |= {p ∧ q} x {r}, {¬p ∧ q} y {r} ⇒ {q} if p thenx else y {r}

• while: |= {p ∧ q} x {q} ⇒ {q} while p dox {¬p ∧ q}

• weakening: |= p1 → p, {p} x {q}, q → q1 ⇒ {p1} x {q1}



Soundness

Hoare calculus: coding validity in MKA

• abort: 〈0|p ≤ p

• skip: 〈1|p ≤ p

• assignment: expressiveness assumption

• composition: 〈x|p ≤ q, 〈y|q ≤ r ⇒ 〈xy|p ≤ r

• conditional: 〈x|(pq) ≤ r, 〈y|(¬pq) ≤ r ⇒ 〈px+ ¬py|q ≤ r

• while: 〈x|(pq) ≤ q ⇒ 〈(px)∗¬p|q ≤ ¬pq

• weakening: p1 ≤ p, 〈x|p ≤ q, q ≤ q1 ⇒ 〈x|p1 ≤ q1



Soundness

Hoare calculus: coding validity in operator Kleene algebra

• abort: 0 ≤ f

• skip: 1 ≤ 1

• assignment: expressiveness assumption

• composition: 〈xy| ≤ 〈y|〈x|

• conditional: 〈px+ ¬py| ≤ 〈x|〈p|+ 〈y|〈¬p|

• while: 〈x|〈p|f ≤ f ⇒ 〈(px)∗¬p|f ≤ 〈¬p|f

• weakening: f1 ≤ f, hf ≤ g, g ≤ g1 ⇒ hf1 ≤ g1



Soundness

Hoare calculus: inference rules are theorems in operator Kleene algebra

• abort: 0 ≤ f trivial

• skip: 1 ≤ 1 trivial

• assignment: expressiveness assumption

• composition: 〈xy| ≤ 〈y|〈x| contravariance

• conditional: 〈px+ ¬py| ≤ 〈x|〈p|+ 〈y|〈¬p| decomp., contravar.

• while: 〈x|〈p|f ≤ f ⇒ 〈(px)∗¬p|f ≤ 〈¬p|f next slide. . .

• weakening: f1 ≤ f, hf ≤ g, g ≤ g1 ⇒ hf1 ≤ g1 isotonicity



Soundness

proof of while-rule 〈x|〈p|f ≤ f ⇒ 〈(px)∗¬p|f ≤ 〈¬p|f

〈x|〈p|f ≤ f⇔ 〈px|f ≤ f ( contravariance )

⇒ 〈(px)∗|f ≤ f ( induction )

⇒ 〈¬p|〈(px)∗|f ≤ 〈¬p|f ( isotonicity )

⇔ 〈(px∗)¬p|f ≤ 〈¬p|f ( contravariance )

proposition: propositional Hoare logic is sound wrt algebraic semantics



Decidability

Hoare formulas: quasi-identities in modal Kleene algebra

〈x1|p1 ≤ q1, . . . , 〈xn|pn ≤ qn ⇒ 〈a0|p0 ≤ q0

decision procedure: (PSPACE)

1. demodalisation: rewrite as equivalent quasi-identity in Kleene algebra

p1x1¬q1 ≤ 0, . . . , pnxn¬qn ≤ 0⇒ p0x0¬q0 ≤ 0

2. hypothesis elimination: reduce to equivalent identity s′ ≤ t′
3. apply PSPACE decision procedure for equational theory



MKAs and Hoare Logic

perspective:

• full automation of Hoare logic seems possible
• assignment rule requires formalising substitution
• handling numbers or data types is so far difficult for ATP systems
• approach extends to total correctness



Divergence and Termination

∇-Kleene module: Kleene module (K,L, :) with divergence ∇ : K → L satisfying

• ∇-unfold x∇ ≤ xx∇
• ∇-coinduction p ≤ xp+ q ⇒ p ≤ x∇ + x∗q

remark: scalar product symbol omitted

interpretation:

1. for modal Kleene algebra, x∇ denotes those states from which
infinite behaviour may start

2. if K models finite actions and L infinite actions, then x∇ is
the infinite iteration of finite action x



Divergence and Termination

fact: if L is Boolean algebra, then ∇-coinduction is equivalent to

p ≤ xp⇒ p ≤ x∇

final part: maxx(p) = p− xp models final part of p w.r.t. x

termination: action x terminates if x∇ = 0

property: if L is Boolean algebra, then x terminates iff

maxx(p) = 0⇒ p = 0

remark: this captures set-theoretic notion of Noethericity



Divergence and Termination

trace model:

• let K be a trace Kleene algebra
• let L be a set of infinite traces under union
• define, for τ ∈ K and π ∈ L the scalar product τ : π like product of finite

traces
• lift that product to sets of traces
• define x∇ = {π ∈ L : π = τ0 · τ1 · . . . with τi ∈ K for i ≥ 0}

Then (K,L, :,∇) is a (full trace) ∇-Kleene module

special cases: path and language ∇-Kleene modules

consequence: ∇-Kleene modules useful for integrated finite/infinite behaviour



Divergence and Termination

fact: divergence and termination can be equationally axiomatised

• p ≤ x∇ + x∗maxx(p) is equivalent to ∇-coinduction
• p ≤ x∗maxx(p) is equivalent to termination

remark: L must be Boolean algebra

intuition: p either leads to divergence or to final states after a finite iteration

perspective:

• characterisation dual to Segerberg’s axiom
• equational approach to finite and infinite behaviours of

discrete dynamical systems
• very suitable for ATP systems (see below)



Domain on Sub-Semirings

near-semiring: structure (S,+, ·) such that

• (S,+) and (S, ·) are semigroups
• right distributivity law (x+ y)z = xz + yz holds

pre-semiring: left pre-isotone near-semiring x+ y = y ⇒ zx+ zy = zy

units: 0, 1 or

• deadlock x+ δ = x δx = δ.
• silent action xτ = x



Domain on Sub-Semirings

basic process algebra: idempotent near-semiring (S,+, ·, ∗) or (S,+, ·, ∗, δ, τ)

game algebra: idempotent pre-semiring (S,+, ·, 0, 1)

probabilistic Kleene algebra: idempotent pre-semiring (S,+, ·, ∗, 0, 1)

demonic refinement algebra: idempotent semiring (S,+, ·, ∗,∞, δ, 1)



Domain on Sub-Semirings

NSτδ NS1
δ PS1

δ

a(x)x = δ
√ √

a(xy) ≤ a(xa2(y))
√ √

a2(x) + a(x) = 1
√ √ √

a(x+ y) = a(x)a(y)
√

x = d(x)x
√

d(xy) = d(xd(y))
√

d(x+ y) = d(x) + d(y)
√

d(δ) = δ
√

d(x)d(y) = d(y)d(x)
√

d(a(x)) = a(x)
√

NS: near-semiring, PS: pre-semiring



Domain on Sub-Semirings

conclusion:

• domain can still be defined on sub-semirings
• this models enabledness conditions for games, processes and actions

in protocols
• semiring domain axioms suffice for probabilistic Kleene algebras

and demonic refinement algebras
• domain does not induce modal operators



Automation Examples

observation: ATP systems have rather been neglected in formal methods

idea: combine MKAs with ATPs and counter example generators

results: experiments with various ATPs (Prover9, SPASS, Waldmeister,. . . )

• ∼ 500 theorems automatically proved
• successful case studies in program refinement, termination, . . . analysis

benefits:

• special-purpose calculi made redundant
• generic flexible library of lemmas
• new style of verification



Automating Bachmair and Dershowitz’s Termination Theorem

theorem: [BachmairDershowitz86] termination of the union of two rewrite
systems can be separated into termination of the individual systems
if one rewrite system quasicommutes over the other

formalisation: ∇-Kleene module over semilattice

encoding:

• quasicommutation yx ≤ x(x+ y)∗

• separation of termination (x+ y)∇ = 0⇔ x∇ + y∇ = 0

statement: termination of x and y can be separated if x quasicommutes over y

remark: posed as challenge by Ernie Cohen in 2001



Automating Bachmair and Dershowitz’s Termination Theorem

results: SPASS finds an extremely short proof in < 5min

(x+ y)∇= y∇ + y∗x(x+ y)∇ (sum unfold)

≤ y∇ + x(x+ y)∗(x+ y)∇ (strong quasicommmutation)

= y∇ + x(x+ y)∇ (since zω = z∗zω)

≤ x∇ + x∗y∇ (coinduction)

= 0 (assumption x∇ = y∇ = 0)



Automating Bachmair and Dershowitz’s Termination Theorem

surprise: proof reveals new refinement law

yx ≤ x(x+ y)∗ ⇒ (x+ y)∇ = x∇ + x∗y∇

for separating infinite loops

remarks:

• reasoning essentially coinductive
• theorem holds in large class of models
• translation safe since relations form ∇-Kleene modules



Automating the DBW-Theorem

lazy commutation: yx ≤ x(x+ y)∗ + y

theorem: [Doornbos/Backhouse/van der Woude]
if x lazily commutes over y then termination of x and y can be separated

comment: this generalisation is much more difficult

lemma: x lazily commutes over y iff

yx∗ ≤ x(x+ y)∗ + y

proof: 44.23s by Prover9.



Automating the DBW-Theorem

proof: (non-trivial direction of DBW-theorem)

1. abbreviate ∇ = (x+ y)∇

2. assume that x and y terminate
3. for ∇ = 0 it suffices to show maxy(maxx(∇)) = 0
4. this is equivalent to maxx(∇) ≤ ymaxx(∇)
5. we calculate

∇= x∇+ y∇≤ x∇+ yx∗maxx(∇)≤ x∇+ x(x+ y)∗maxx(∇) + ymaxx(∇)

≤ x∇+ x(x+ y)∗∇+ ymaxx(∇)= x∇+ ymaxx(∇)

6. the claim now follows from the Galois connection for complementation and
the definition of maxx

remark: the second step uses the equational characterisation of termination



Automating the DBW-Theorem

remarks:

• proof is much more compact than previous approaches
• for the first time in first-order setting
• theorem holds again in large model class
• main calculation could again be automated
• full automation remains a challenge



Automating a Modal Correspondence Result

modal logic: Löb’s formula 2(2p→ p)→ 2p

translation to MKA/Kleene modules: xp ≤ x(p− xp) = xmaxx(p)

intuition: all states with transitions into p are states from which no further
transitions are possible

remark: this would correspond to Noethericity if x is transitive (xx ≤ x)

reminder: two equivalent characterisations of Noethericity

• p ≤ x∗maxx(p) (x pre-Löbian)
• maxx(p) = 0⇒ p = 0 (x Noetherian)



Automating a Modal Correspondence Result

property: for every x in some ∇-Kleene module

(i) x Löbian ⇒ x Noetherian
(ii) x Noetherian ⇔ x pre-Löbian (see above)
(iii) x pre-Löbian and x = xx ⇒ x Löbian

proofs: with Prover9 in ∇-Kleene algebra

(i) ≤ 4s
(ii) ≤ 4s and ≤ 20s (hypothesis learning)
(iii) ≤ 1s (hypothesis learning)

remark: this is a modal correspondence result

• Noethericity corresponds to frame property
• proof is calculational and automated
• model theory is normally used



Automating Hoare Logic

algorithm: integer division n/m

fun DIV = k:=0;l:=n;

while m<=l do k:=k+1;l:=l-m;

precondition: 0 ≤ n

postconditions: n = km+ l 0 ≤ l l < m

proof goal: 〈x1x2(ry1y2)∗¬r|p ≤ q1q2¬r



Automating Hoare Logic

proof: two phases coupled by assignment rule p[e/x] ≤ |{x := e}]p
1. MKA: goal follows from p ≤ |x1]|x2](q1q2) q1q2r ≤ |y1]|y2](q1q2)

(automated with Prover9)
2. arithmetics: subgoals must still be manually verified, e.g.,

|x1]|x2](q1q2)= |{k := 0}] |{l := n}](q1q2)≥ ({n = km+ l}{0 ≤ l})[k/0][l/n]

= {n = 0m+ n}{0 ≤ n}= {0 ≤ n}

= p

remark:

• reasoning essentially inductive
• domain specific solvers should be integrated into ATPs
• try SPASS+T?



Newman’s Lemma: A Proof Challenge

Newman’s lemma: A term rewriting system is confluent if it is locally confluent
and terminating.

generalisation and translation:

• x commutes over y y∗x∗ ≤ x∗y∗
• x locally commutes over y yx ≤ x∗y∗

theorem: In ∇-Kleene algebra, if x+ y terminates and x locally commutes over
y, then x commutes over y



Newman’s Lemma: A Proof Challenge

proof: (so far)

• one page of semi-calculational arguments
• main calculation

〈y∗|〈y|〈p〉|x〉|x∗〉≤ 〈y∗|〈py〉〈y||x〉〈px〉|x∗〉
≤ 〈y∗|〈py〉|x∗〉〈y∗|〈px〉|x∗〉
≤ 〈y∗|〈py〉|x∗〉|x∗〉〈y∗|
≤ 〈y∗|〈py〉|x∗〉〈y∗|
≤ |x∗〉〈y∗|〈y∗|
≤ |x∗〉〈y∗|

• px = 〈x|p and py = 〈y|p
• proof lifted to level of modal operators



Newman’s Lemma: A Proof Challenge

question: can you automate this?

remarks:

• Newman’s lemma seems to require a mix of inductive and coinductive
reasoning
• the main calculation mimics precisely the traditional diagrammatic proof
• more generally, Kleene algebras give an algebraic semantics to (some)

rewrite diagrams



A Non-Modal Example: Back’s Atomicity Refinement Law

demonic refinement algebra: [von Wright04] Kleene algebra

• with axiom x0 = 0 dropped
• extended by strong iteration ∞ encompassing finite and infinite iteration

remark: abstracted from refinement calculus [BackvonWright]

atomicity refinement law for action systems

• complex theorem first published by Back in 1989
• long proof in set theory analysing infinite sequences
• proof by hand in demonic refinement algebra still covers 2 pages
• automated analysis reveals some glitches and yields generalisation

first task: build up library of verified basic refinement laws for proof



A Non-Modal Example: Back’s Atomicity Refinement Law

theorem: if (i) s ≤ sq (ii) a ≤ qa (iii) qb = 0 (iv) rb ≤ br
(v) (a+ r + b)l ≤ l(a+ r + b) (vi) rq ≤ qr (vii) ql ≤ lq
(viii) r∗ = r∞ (ix) q ≤ 1

then
s(a+ r + b+ l)∞q ≤ s(ab∞q + r + l)∞

two-step proof with “hypothesis learning”

1. assumptions imply s(a+ r + b+ l)∞q ≤ sl∞qr∞q(ab∞qr∞)∞

wait 60s for 75-step proof with Prover9
2. q ≤ 1 implies sl∞qr∞q(ab∞qr∞)∞ ≤ s(ab∞q + r + l)∞

wait < 1s for 30-step proof

remark: full proof succeeds for l = 0 (1013s for 46-step proof)



A Non-Modal Example: Back’s Atomicity Refinement Law

equational proof can be reconstructed

s(a+ b+ r + l)q= sl
∞

(a+ b+ r)
∞
q

= sl
∞

(b+ r)
∞

(a(b+ r)
∞

)
∞
q

= sl
∞
b
∞
r
∞

(ab
∞
r
∞

)
∞
q

≤ sl∞b∞r∞(qab
∞
r
∞

)
∞
q

= sl
∞
b
∞
r
∞
q(ab

∞
r
∞
q)
∞

≤ sql∞b∞r∞q(ab∞r∞q)∞

≤ sl∞qb∞r∞q(ab∞r∞q)∞

≤ sl∞qr∞q(ab∞r∞q)∞

= sl
∞
qr
∞
q(ab

∞
r
∗
q)
∞

≤ sl∞qr∞q(ab∞qr∗)∞

= sl
∞
qr
∞
q(ab

∞
qr
∞

)
∞
.



ATP Background

Ordered resolution: for φ maximal wrt syntactic ordering ≺ on terms/literals

Γ→ ∆, φ Γ′, φ→ ∆′

Γ,Γ′ → ∆,∆′
Γ→ ∆, φ, φ

Γ→ ∆, φ

Redundancy: clause is ≺-redundant wrt clause set S if it is entailed by
≺-smaller instances of clauses from S

Orb: clause set closed under ordered resolution and redundancy elimination

Refutational completeness: orb of inconsistent clause set contains empty clause

remark: unification used at first-order level



ATP Background

strategy:

• transform first-oder formulas into clause set
• close working set under deduction rules
• apply deduction rules lazily
• apply redundancy elimination rules eagerly
• procedure must be fair with respect to clauses

ATP systems used:

• Prover9 and Vampire: fastest provers for algebraic theories
• Waldmeister: fastest tool for unit equations
• SPASS: ATP in sorted/typed setting



Conclusion

these lectures: modal Kleene algebras offer

• simple equational calculus including some (co)induction
• rich model class (traces, paths, languages, relations, functions,. . . )
• easy automation
• interesting applications in program analysis/verification
• relevant for modelling discrete dynamical systems

related work:

• automation of relation algebras similarly successful
• code at www.dcs.shef.ac.uk/∼georg/ka
• results will be integrated into TPTP library



Conclusion

general conclusion: ATP systems + computational algebras motivates

verification challenge

• off-the-shelf ATP with domain-specific algebras
• promising alternative to conventional approaches (model checking, HOL)
• light-weight formal methods with heavy-weight automation



Seek Simplicity and Distrust It.
[Whitehead]
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15. B. Möller and G. Struth. wp is wlp. In I. Düntsch, W. MacCaull and M. Winter, editors,

Relational Methods in Computer Science, volume 3929 of LNCS, pages 200–211. Springer,

2005.
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