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Preface 
 

MIUA 2013 is the seventeenth in the series of annual meetings. Since its inauguration, in 1997 at 

Oxford, this multidisciplinary event has been providing a forum for presenting and discussing 

research related to medical image analysis. The areas covered by MIUA include computer science, 

mathematics, engineering and physics as well as biosciences, medical research and clinical practice. 

The principal research interest of the conference is in methods of analysis that extract meaningful and 

quantitative information from images to aid diagnosis and therapy or to support research in 

fundamental biomedical sciences. Over the lifetime of the MIUA conferences we have seen 

significant advances made in the development of novel imaging modalities and methods. Many ideas 

first proposed by members of the medical imaging community have progressed from the research 

laboratory to clinical practice and are making direct impact on patient care. We are very pleased to 

host a conference at Birmingham that contributes to these endeavours. This year’s keynote lectures 

address important translational aspects of research. The speakers are three eminent academics: 

Professor Boudewijn Lelieveldt  from Leiden University Medical Centre, Netherlands, Professor 

Daniel Rueckert from Imperial College London, U.K., and Professor Milan Sonka from The 

University of Iowa, U.S.A. We are grateful for their contributions.  

 

The conference prides itself in providing a friendly forum and support for research students and young 

scientists. The organisers of the MIUA 2012 conference at Swansea initiated the idea of pre-

conference tutorials aimed at introducing the participants to novel or emerging modalities or 

techniques by a leading expert in a field. This year we are grateful to Dr Hamid Dehghani, from the 

University of Birmingham, for organising a workshop on optical molecular imaging.  

 

MIUA was originally conceived as a U.K. event, however, over the years international contributions 

from Europe and beyond have been increasing. This year we warmly welcome participants from 

Australia, Austria, Belgium, Canada, France, Germany and Netherlands. 

 

There are many people whose effort and commitment contributed to the organisation of this 

conference and who deserve special thanks: 

- The MIUA Steering Committee chaired by Bill Crum, for their unfailing support and advice. 

- The reviewers, for their thoughtful comments and timely submission of paper reviews. 

- Caroline Wilson, for her sterling help with administration; without Caroline’s fantastic 

organisational skills, negotiating talents and always optimistic outlook the conference would have 

been much harder to bring to fruition. 

- James Brown and Alan Race, for designing and maintaining the MIUA 2013 website and 

managing the CMT submission system; James’ help with many other aspects of the conference, 

including graphics designs, has been invaluable. 

- Andy Palmer and Eric Pitkeathly, for editing the conference proceedings. 

- All the students, staff and session Chairs, for their help before and during the conference.  

- Professor Richard Williams OBE, for formally opening the conference. 

- Professor Stuart Green and Dr Geoff Heyes, for help in arranging for delegates to be able to visit 

the CyberKnife installation at the Queen Elizabeth Hospital. 

- The British Machine Vision Association, for sponsoring bursaries for the best student papers.  

 

Finally, many thanks go to the authors and presenters of the papers and to all the conference delegates 

for their scientific contributions, and through participation, for helping to maintain a healthy and 

vibrant medical image analysis community. 

 
Ela Claridge 

Chair, MIUA 2013 
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Boudewijn P.F. Lelieveldt

Image analysis challenges in translational cancer research

The rapid developments in in-vivo molecular imaging modalities such as fluo-
rescence and bioluminescence imaging enables the live imaging of gene expres-
sion, cell fate and protein interactions. Combined with detailed structural imaging
modalities such as magnetic resonance imaging, the biochemical onset of disease
and therapy can be monitored in combination with structural and functional conse-
quences over time. This presentation discusses a number of image analysis chal-
lenges emerging from longitudinal pre-clinical molecular imaging studies. Three
steps towards a quantitative 3D analysis of follow-up small animal imaging will
be presented: whole-body registration, change visualization in follow-up data and
fusion of optical and 3D structural imaging data. Several application examples will
be presented in the context of translational cancer research.
Boudewijn P.F. Lelieveldt is a Professor of Biomedical Imaging at the Department
of Radiology, Leiden University Medical Center, Leiden, the Netherlands, where
he is heading the Division of Image Processing (www.lkeb.nl). He is also appointed
at the Department of Intelligent Systems, Delft University of Technology, Delft, the
Netherlands in the context of a faculty exchange in the Medical Delta consortium

(www.medicaldelta.nl). His main research interest is the integration of a-priori knowledge into segmentation
and registration algorithms, with main applications to cardiac imaging and multi-modal pre-clinical imaging and
fluorescence-guided surgery. He also serves as a member of the Editorial Board of Medical Image Analysis and
the International Journal of Cardiovascular Imaging, and is an Associate Editor of IEEE Transactions on Medical
Imaging. He is program and organization committee member for several international conferences, among others
IPMI 2007 and ISBI 2016.

3



Daniel Rueckert

Sparsity, Dictionaries and Patches: Applications to Medical Image Reconstruction and Analysis

This talk will focus on the convergence medical imaging and machine learning
techniques for the discovery and quantification of clinically useful information
from medical images: The first part of the talk will describe machine learning
techniques such a dictionary learning that can be used for image reconstruction,
e.g. the acceleration of MR imaging. The second part will discuss model-based
approaches that employ statistical as well as probabilistic approaches for segmen-
tation. In particular, we will focus on atlas-based segmentation approaches that em-
ploy advanced machine learning approaches such as manifold learning and classi-
fier fusion to improve the accuracy and robustness of the segmentation approaches.
Daniel Rueckert is a Professor of Visual Information Processing in the Department
of Computing, Imperial College London. He has founded and leads the Biomedical
Image Analysis Group (BioMedIA), which currently has 9 post-docs and 18 PhD
students. He has pioneered the development of non-rigid registration algorithms
that have been successfully used in the breast, liver, heart and brain. Much of the

research has been extensively disseminated to the academic community (see http://www.doc.ic.ac.uk/ dr for more
details) In 2006 co-founded IXICO (www.ixico.com) to provide imaging analysis solutions for clinical trials and
healthcare diagnostics. He has published more than 300 peer- reviewed publications. He is an associate editor of
IEEE Transactions on Medical Imaging (TMI) and a member of the editorial board of Medical Image Analysis and
Image & Vision Computing. He has served as a member of organising and programme committees at numerous
conferences, e.g. he has been General Co-chair of MIUA 2004, MMBIA 2006, WBIR 2012 and FIMH 2013 as
well as Programme Co-Chair of MICCAI 2009 and ISBI 2012. More recently, he has been awarded a prestigious
ERC Synergy Grant (only 1.5
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Milan Sonka

Translational Applications of Medical Image Analysis: 3-D Retinal OCT

Accurate and reliable image segmentation is of paramount importance in medical
image analysis. In ophthalmology, translational applications of medical imaging
were until recently limited to 2D analyses of fundus photographs. With a fast-
growing routine clinical use of 3-D imaging modalities like optical coherence to-
mography (OCT), ophthalmologists (same as radiologists decades ago) are faced
with ever-increasing amounts of image data to analyze and quantitative outcomes
of such analyses are growing in importance. Yet, daily interpretation of clinical
ophthalmic OCT images is still typically performed visually and qualitatively, with
quantitative clinical analysis being an exception rather than the norm. Since per-
forming full OCT image segmentations in 3D is infeasible for a physician in clin-
ical setting due to the time constraints, quantitative and highly automated analysis
methods must be developed. Our approach to simultaneous segmentation of mul-
tiple interacting surfaces appearing in the context of other interacting objects will
be presented. The reported methods are part of the family of graph-based im-
age segmentation methods dubbed LOGISMOS for Layered Optimal Graph Image
Segmentation of Multiple Objects and Surfaces. This family of methods guaran-

tees solution optimality with direct applicability to n-D problems. The presentation will focus on a broad set of
ophthalmic OCT image analysis tools developed at the Iowa Institute for biomedical Imaging at the University of
Iowa and employed in translational research when analyzing image data from patients with glaucoma, age-related
macular degeneration, diabetic macular edema, and other vision impairing and/or blinding diseases.
Milan Sonka received his Ph.D. degree in 1983 from the Czech Technical University in Prague, Czech Republic.
He is Professor and Chair of the Department of Electrical & Computer Engineering, Professor of Ophthalmology
& Visual Sciences, and Radiation Oncology at the University of Iowa, Director of the Iowa Institute for Biomedical
Imaging, IEEE Fellow, and AIMBE Fellow. His research interests include medical imaging and knowledge-based
image analysis with emphasis on cardiovascular, pulmonary, orthopedic, cancer, and ophthalmic image analysis.
He is the first author of 3 editions of Image Processing, Analysis and Machine Vision book (1993, 1998, 2008) and
co-authored or co-edited 19 books/proceedings. He has published more than 120 journal papers and over 340 other
publications. He is Editor in Chief of the IEEE Transactions on Medical Imaging and member of the Editorial
Board of the Medical Image Analysis journal. To bring results of his research work to clinical practice, he has
co-founded two medical image analysis companies – Medical Imaging Applications LLC, and VIDA Diagnostics
Inc.
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MOLTZ ET AL.: CREATION OF PROBABILISTIC EXPERT SEGMENTATIONS 1

A tool for efficient creation of probabilistic
expert segmentations

Jan Hendrik Moltz1

jan.moltz@mevis.fraunhofer.de

Christiane Steinberg2

christiane.steinberg@miw.uni-luebeck.de

Benjamin Geisler1

benjamin.geisler@mevis.fraunhofer.de

Horst Karl Hahn1

horst.hahn@mevis.fraunhofer.de

1 Fraunhofer MEVIS
Institute for Medical Image Computing
Bremen, Germany

2 University of Lübeck
Lübeck, Germany

Abstract

The validation of segmentation algorithms is often based on manual expert delin-
eations, but they are subject to variability. The standard approach of using a single
binary reference segmentation may therefore provide misleading results. While using
multiple references increases reliability, the effort required from the experts may become
infeasible. As a solution, we developed a tool that allows individual experts to create
probabilistic segmentations by expressing their uncertainty about the true segmentation.
An explicit distinction between statistical and semantic uncertainty is made. In a study,
we compared the results of three users using our new tool for delineating liver tumors
in CT with ten users drawing conventional contours. We found that with our tool more
variability could be captured by a lower number of experts.

1 Introduction
The development of segmentation algorithms for different anatomical structures and imaging
protocols is an important task in medical image analysis. The validation of these methods,
however, is often treated as a subordinate problem. Algorithms are often evaluated by com-
paring their results to a single reference segmentation which is considered to be the “ground
truth”, although it is well known that manual delineations even by experts always show
some degree of variability. This variability reflects the uncertainty of the experts about the
true segmentation.

For example, in a previous publication [3] we have analyzed the variability among ten
expert delineations for liver tumors in CT. Using the average segmentation as a reference, we
found that any subset of the experts makes a significant error. A closer look at the individual
delineations reveals that two kinds of uncertainty should be distinguished. Statistical uncer-
tainty can be modeled by a mean contour and an uncertainty margin of a particular width. It
can be caused by differing perception of the object size, for example due to different window
settings. If the contrast is low, some readers may tend to draw the outline around all possible

c⃝ 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 MOLTZ ET AL.: CREATION OF PROBABILISTIC EXPERT SEGMENTATIONS

object voxels, while others mark only the region that certainly belongs to the object. In this
case, it can be assumed that the experts essentially agree about the segmentation. An algo-
rithm that produces any of their segmentations and anything in between can be considered
correct. Semantic uncertainty, on the other hand, cannot be modeled by deviation around a
mean contour. Instead, larger regions, not just narrow bands of voxels, are included by some
experts and excluded by others, resulting in a fuzzy segmentation with distinct areas of a
particular probability. Then, a good algorithm should be close to at least one of the expert
delineations, whereas a compromise between them would not be desirable.

These observations suggest that the common approach of using a hard “ground truth” is
not adequate for validation. In cases where experts are not certain about the true segmenta-
tion, this uncertainty should be incorporated into the validation methodology. Unfortunately,
it is often infeasible to acquire reference segmentations by a substantial number of experts.
Even large validation initiatives such as LIDC [1] collected only four segmentations per case.
Most individual researchers do not have access to more than one or two experts. A common
restriction, however, is that experts are usually asked to draw a single contour as their best
estimate of the true segmentation. Variability is then measured in terms of the differences
between the best estimates of multiple experts. An aspect that is mostly disregarded is the
uncertainty of each individual expert. Before drawing a contour, each reader has to make
two decisions: where to draw the most probable boundary within an often blurred margin
and whether or not to include ambiguous regions which may or may not be part of the object.

The hypothesis of our work is that the variability between multiple experts can in part
be reproduced by a smaller number of experts, if they are given a tool to express their un-
certainty. Such a tool will be presented and evaluated in this paper. The evaluation uses the
same data as our previous study [3] and compares the results of three users with the new
tool to those of ten users drawing conventional contours. Although we focus on a particular
problem, liver tumor segmentation in CT, the methodology is easily generalised.

2 Related work
A related approach was presented by Restif [4]. He introduced a framework called Comets
that allows a single user to create a probabilistic reference segmentation. It was specifically
developed for 2d cytometry images where blurred boundaries and connected objects are
common problems. The user draws the most probable outline and adds inner and outer limit
pixels which are definitely inside or outside the object, but as close to the border as possible.
From this input a confidence map is computed by setting 0 on the drawn outline, ±1 on the
limit pixels and interpolating on all other pixels.

As compared to Restif’s work, this article presents three additional contributions. First,
the focus will be on 3d images. While transferring the concept to 3d is straightforward in
principle, efficiency becomes an issue when contours have to be drawn in each slice. The
concept of limit pixels may not be intuitive for all users and it might take some time to define
them on all slices. Therefore, we opted for a simpler and more efficient interaction based on
contours. Second, Comets does not distinguish statistical and semantic uncertainty but cov-
ers both by a single method and blends them together in the confidence map. For validation
purposes, however, it is advantageous to separate these two aspects. This is done explicitly in
our new tool. Finally, Restif does not compare Comets to other ways of generating reference
segmentations. Since our work was motivated by the goal to reduce the number of necessary
experts without losing information, we conducted a user study to evaluate this.

8



MOLTZ ET AL.: CREATION OF PROBABILISTIC EXPERT SEGMENTATIONS 3

(a) (b) (c) (d)

Figure 1: Illustration of the workflow of the new tool and the results it produces. (a) User-
drawn contour (yellow) and inner and outer contours (green and red) automatically con-
structed from the radius of the circle. (b) Probability map. (c) Additional region with confi-
dence 0.5 (blue). (d) Probability map.

3 Workflow
With our tool, implemented in MeVisLab [5], segmentation is done in two phases. In the
first phase, the most probable contour is drawn. The statistical uncertainty is modeled by
a rim around this contour. The inner boundary of the rim delineates all voxels which are
definitely part of the tumor. Analogously, all voxels outside the outer boundary definitely
belong to the background. The width of the uncertainty rim is set by the user before drawing
the contour. For simplicity, this setting is applied globally on each slice, but can be adapted
locally afterwards. The current width is visualized as the diameter of a circle displayed at
the cursor position and can be changed by turning the mouse wheel (Figure 1(a)).

Once the user has finished drawing, the inner and outer contours are generated by ap-
plying a distance transform to the user-defined contours and adding or subtracting the un-
certainty radius. These contours are displayed and can be edited. Although in many cases
a global uncertainty radius is reasonable, there are cases where a different value should be
set locally. For example, a tumor may have a blurred boundary to the liver parenchyma, but
a clearly defined one to a structure outside the liver. Editing is achieved by drawing new
partial contours which are inserted into the existing ones.

Now the contours are transformed into a probability map (Figure 1(b)). Voxels are as-
signed a value of 1 if they are inside the inner contour and 0 if they are outside the outer
contour. Between the contours, probabilities are linearly interpolated. Note that, unlike Res-
tif [4], the values are limited to [0,1] and do not decrease further outside the outer contour.

In the optional second phase, additional regions can be outlined and assigned a confi-
dence of belonging to the tumor (Figure 1(c)). For these regions, no uncertainty margin is
defined because that seemed to be too confusing for users, although technically it would not
be a problem. Regions are included in the probability map by using the maximum of the
value assigned in the first phase and the confidence set by the user (Figure 1(d)). Alterna-
tively, the results of the two phases can be stored separately for further analysis.

4 Evaluation
Our new tool was evaluated in a study with three experts (one radiologist and two radiology
technicians) and the same 13 liver tumors that were used in our previous study [3]. Four
example tumors are shown in the top row of Figure 2.

9
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0.82

0.77
(a)

0.60

0.52
(b)

0.92

0.88
(c)

0.73

0.76
(d)

Figure 2: Four example tumors from the study. Top row: Original images. Middle row:
Averaged probability maps created by ten experts drawing conventional contours [3]. Bottom
row: Average probability maps created by the three study participants with the new tool.
Additionally, the fuzzy self-overlap as defined in Section 4 is given.

The usage of the features offered by the tool varied across the participants. Readers 1
and 2 adapted the uncertainty width in each case, whereas Reader 3 always used the same
value (in voxels). Reader 3 also did not draw any additional regions. The two others added
three and eight regions, respectively, to eight of the 13 tumors.

We compared the new results to our earlier ones and found a high visual similarity for
many of the tumors. The middle and bottom rows of Figure 2 show some examples. The
chosen uncertainty widths correspond well to the statistical uncertainty among ten experts as
illustrated by tumors (a) and (b). Still, some interesting effects can be seen. In tumor (c), for
instance, a region was left out by one of the three readers although it had been included by
all ten readers in the earlier study. For tumor (d), on the other hand, there was slightly more
variability among ten readers than could be reproduced by three.

For a more quantitative analysis, we define a metric that captures the variability encoded
in a probabilistic segmentation. It is based on the fuzzy volume overlap, where the volume
of a segmentation is the sum of the probabilities of all voxels, with intersection and union
being defined by the voxel-wise minimum and maximum [2]. The fuzzy overlap of two
segmentations compares two aspects, the mean segmentations and the spread of probabilities
around them. Applying the fuzzy overlap to a probabilistic segmentation and its own mean
segmentation, defined by thresholding at 0.5, measures the variability as desired. We call
this the fuzzy self-overlap. It is 1 for a binary segmentation and gets lower the more the
probabilities are spread. Figure 2 gives these values for the example tumors.

Figure 3 compares the variability in averaged segmentations created from the ten conven-
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Figure 3: Variability in combined segmenta-
tions by different numbers of experts, using
conventional and probabilistic expert segmen-
tations. The lower the fuzzy self-overlap, the
higher the variability.

tional segmentations of our earlier study and from the three probabilistic ones of the present
study. In the plot, it is clearly visible that with the new tool more information can be acquired
using fewer experts. One expert using the new tool could replace three experts drawing con-
ventional contours. Together, the three experts in our study generated more variability than
ten in the previous study.

After the study, the participants were interviewed. They said that they felt unfamiliar
with expressing their uncertainty because usually they have to make a crisp decision. While,
however, the uncertainty width was adopted easily, the readers had difficulties defining ad-
ditional regions and quantifying their confidence. This shows that users need some training
to get used to the new way of thinking the tool requires. The reader who achieved the best
results was already interviewed in the development phase and probably had the best under-
standing of the concepts at the time of the study.

5 Discussion

The motivation for this work was to be able to reduce the number of experts needed for a
validation study without losing information and without increasing the workload per expert
too much. A basic decision was made to separate statistical and semantic uncertainties ex-
plicitly, both for reducing the effort and for making it available for further analysis. In the
study, the statistical uncertainties were captured well at virtually no additional cost because
the uncertainty width was set very quickly. A possible disadvantage of the conceptual sepa-
ration, however, is the fact that users typically decide to add a confidence region in the first
phase, but have to wait for the second phase before they can actually draw it. This requires
a high concentration and memory capacity and might be a reason why not many confidence
regions were added. A workflow that allows alternating the two phases on each slice might
improve this. As a further improvement, one might think about not just adding, but also
subtracting confidence regions from the initial segmentation. This might be more intuitive
than leaving out regions with a very high confidence in the first phase and adding them later.

The results of the study show that using the new tool expert uncertainty can be recovered
with a lower number of experts as compared to conventional contours. This was confirmed
both visually and quantitatively. It is interesting to see that in some cases confidence regions
were used that have no correspondence among ten experts. This shows that the explicit cap-
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turing of uncertainty can actually gather additional information compared to just averaging
over a large number of segmentations. But on the other hand, there are also some cases where
the complete variation cannot be reproduced with a lower number of readers. In Figure 2,
tumors (c) and (d) illustrate this duality.

The processing time was not measured, but from our observations during the study it
can be said that the new methods allows a considerable reduction of efforts. Assuming that
segmentation took 25 % longer than pure outlining, which is a very conservative estimation
since confidence regions are typically small and cover only a couple of slices, the overall
person time was still reduced by almost two thirds.

Future work is necessary to investigate how these probability maps can be used for al-
gorithm validation. Since they are not inherently binary, many common approaches are not
directly applicable. Some widely used metrics like the volume overlap can be easily gen-
eralized for probabilistic segmentations, whereas for surface distances there is no obvious
solution and different proposals have been made. Crum et al. [2] discuss their application in
medical image analysis. They focus, however, on the case where the algorithm result is prob-
abilistic rather than the reference segmentation. Further experiments should provide insight
into how suitable these methods are for validation. Also, common methods are not able to
make use of the explicit distinction between statistical and semantic uncertainty. The addi-
tional information that is becoming available calls for a completely new validation paradigm
that works not only on (a set of) random expert delineations, but builds up knowledge about
plausible and implausible segmentations.

We believe that it is important to work towards more meaningful and reliable validation
of segmentation algorithms. This article is a first step that shows how this can be achieved
with limited expert efforts.
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Abstract

Magnetic resonance imaging (MRI) and network analysis was used to assess the
connectivity between brain regions in a group of 30 amyotrophic lateral sclerosis (ALS)
patients when compared with a group of age-matched healthy controls. For each subject,
85 grey matter regions (network nodes) were identified from high resolution structural
MRI and network connections were formed from the white matter tracts generated by
diffusion MRI and probabilistic tractography. Whole-brain networks were constructed
using an anatomically motivated white matter waypoint constraint and a weighting re-
flecting tract-averaged fractional anisotropy. An established statistical technique called
network-based statistics was then used, without a priori selected regions, to identify a
subnetwork (13 nodes and 13 bidirectional connections) of reduced connectivity in the
ALS group compared with the controls (p = 0.021, corrected). These findings suggest
that degeneration in ALS is strongly linked to the motor cortex.

1 Introduction
Amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease, is a
devastating neurodegenerative disorder affecting upper and lower motor neurons in the motor
cortex, brain stem and spinal cord [11]. Though the aetiology of ALS is not well understood,
magnetic resonance imaging (MRI) has proved useful in probing the white matter degenera-
tion attributed to ALS [1, 5]. It is possible that network analyses may improve understanding
of the degeneration in connectivity. Whole-brain structural networks [13] can be constructed
from MRI data, with network nodes identified from high resolution structural MRI and net-
work connections formed by the white matter tracts generated from diffusion MRI (dMRI)
and tractography. Statistical techniques, such as network-based statistics (NBS) [16], can
then be used to identify impairments in connectivity due to ALS.

c� 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: An overview of the processing pipeline for constructing a whole-brain network
from T1-weighted and dMRI data.

2 Materials and methods
30 ALS patients (mean age 58.3±11.2 years, 17 male, ALS Function Rating Scale-revised
score > 20) and 30 healthy controls (mean age 58.5±12.0 years, 16 male) were recruited and
underwent an MRI protocol. All imaging data were acquired using a GE Signa HDxt 1.5 T
clinical scanner. For the dMRI protocol, single-shot spin-echo echo-planar (EP) diffusion-
weighted whole-brain volumes (b = 1000 s/mm2) were acquired in 64 non-collinear direc-
tions, along with seven T2-weighted volumes at 2× 2× 2 mm resolution. 3D T1-weighted
inversion-recovery prepared, fast spoiled gradient-echo volumes were acquired at 1×1×1.3
mm resolution in the coronal plane.

An automated connectivity mapping pipeline was developed to construct white matter
structural networks from T1-weighted and dMRI data (Fig. 1). This framework is described
below with settings informed by the findings from a test-retest study using healthy volun-
teers [4]. Each T1-weighted brain was divided into distinct neuroanatomical regions using
the volumetric segmentation and cortical reconstruction performed with the FreeSurfer im-
age analysis suite using the default parameters. The Desikan-Killiany atlas delineated 34
cortical structures per hemisphere [6, 8]. Additionally, sub-cortical segmentation was ap-
plied to obtain 8 grey matter structures per hemisphere plus the brain stem [7]. As a result,
85 regions-of-interest (ROIs) were retained per subject. The results of the segmentation
procedure were used to construct grey and white matter masks for each subject.

The dMRI data underwent eddy current correction to counteract systematic imaging dis-
tortions and patient motion using affine registration to the first T2-weighted volume of each
subject [9]. Fractional anisotropy (FA) was calculated at each voxel location measuring the
degree of anisotropic diffusion,

FA =

�
1
2

�
(λ1 −λ2)2 +(λ2 −λ3)2 +(λ3 −λ1)2

�
λ 2

1 +λ 2
2 +λ 2

3

, (1)
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where (λ1,λ2,λ3) are the eigenvalues of the diffusion tensor [3]. Skull stripping and brain
extraction were performed on the T2-weighted volumes and applied to the FA volume of
each session [12]. A cross-modal non-linear registration protocol was used to align neu-
roanatomical ROIs from T1-weighted volume to diffusion space. Firstly, linear registration
[9] was used to initialise the alignment of each brain-extracted FA volume to the corre-
sponding FreeSurfer extracted brain using a mutual information cost function and an affine
transform with 12 degrees of freedom. Following this initialisation, a non-linear deforma-
tion field based method [2] was used to refine local alignment. FreeSurfer segmentations and
anatomical labels were then aligned to diffusion space using nearest neighbour interpolation.

Tractography was then initiated from all voxels within each grey matter ROI using an
established probabilistic tensor tractography algorithm [10]. Probability density functions
(PDFs) were computed at each voxel location, which capture the uncertainty in the prin-
cipal directions of diffusion. PDFs were described with a rotationally symmetric Watson
distribution and estimated from the dMRI data. From each seed point 100 streamlines were
constructed from voxel to voxel until terminated by stopping criteria, specifically, curvature
exceeding 80 degrees, FA below 0.1, or entering an extra-cerebral voxel.

Connections were computed by recording connections between all ROI pairs. The end-
point of a streamline was considered to be the first grey matter ROI encountered when
tracking from the seed location. Streamlines were only considered valid if they had passed
through at least one white matter waypoint voxel. The white matter regions obtained from
FreeSurfer were used as the waypoint mask. FA weighted networks were constructed where
each entry in an 85×85 adjacency matrix was computed,

ai j =
1

|Si j| ∑
s∈Si j

∑v∈Vs FA(v)
ms

, (2)

where Si j is the set of streamlines originating from node i and terminating at node j, Vs is
the set of ms voxels found along the streamline between the seed point of streamline s and
the first voxel encountered at node j. FA measures the diffusion anisotropy per voxel. As
tractography cannot distinguish between afferent and efferent connections, the weights in the
adjacency matrix were made symmetric across the diagonal, âi j = 1

2 (ai j + a ji), resulting in
an undirected positive-weighted graph. Self-connections were removed.

Connectivity within these networks was compared between the ALS and control groups
using NBS [16], without a priori selected regions. NBS exploits the extent to which the
connections identified by the contrast are interconnected to offer a potential gain in statistical
power. As tractography is known to produce some false connections [14], we examined a
number of thresholded networks for which connections were only retained if they occurred
in at least a certain proportion of subjects. In the NBS framework, first a two-sample t-test
was performed at each of the 3570 network connections to identify differences between the
ALS and control groups. Secondly, a set of suprathreshold edges and the corresponding set
of maximally connected network components was computed. Finally, permutation testing
with 5000 iterations was used to estimate the distribution of component size and compute a
corrected p-value for the maximally connected subnetwork(s).

3 Results
Approximately 6 million streamlines were seeded per subject (Fig. 2(a)) and networks con-
structed as described. Two ALS sessions were discarded due to incomplete data or patient
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Figure 2: (a) Example streamlines for one subject (56 year old male); (b) 85×85 connectiv-
ity matrix showing connections averaged across all subjects, where the two large rectangular
patterns on the diagonal correspond to the left and right hemispheres; (c) Network showing
the nodes and interconnections identified by NBS where node location is indicated by colour;
(d) Coronal view of the tracts (yellow) involved in the subnetwork identified by NBS for one
subject (63 year old female) where colouring indicates the precentral gyrus and pallidum.

motion. Figure 2(b) shows the mean connectivity matrix averaged across all subjects. Find-
ings from a one-way ANOVA suggest there is no difference in the global network ‘strength’
(mean of each subject’s connectivity matrix) between the ALS and control groups. How-
ever, NBS identified a subnetwork (13 nodes and 13 bidirectional connections, Fig. 2(c)) of
reduced connectivity in the ALS group (p = 0.021, corrected). The same network was pro-
duced over several different network thresholds (tested over thresholds for which connections
occurred in at least 10-50% of subjects), indicating that the NBS procedure is largely robust
to possible false connections. This subnetwork involves three nodes within the primary mo-
tor cortex (left and right precentral, left paracentral), bilateral superior frontal connections,
four subcortical areas (left and right pallidum, left thalamus, left caudate), two nodes in the
left cingulate cortex (posterior and rostral anterior) and two posterior nodes (left precuneus,
left pericalcarine). Eight of the thirteen connections are to nodes within the primary motor
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cortex. Figure 2(d) shows an example of the tracts involved in the subnetwork identified by
NBS for one subject. On average, the connections in this subnetwork showed a 0.062±0.09
reduction in tract-averaged FA in the ALS group compared with the controls, whereas no
difference in global network strength was found between the two groups.

4 Conclusions

Previous dMRI studies have shown reduced white matter integrity in the cortico-spinal tract
and corpus callosum [1, 5], areas which are interlinked with several of the sub-cortical and
motor cortex nodes identified by our subnetwork (Fig. 2(d)). A previous NBS study [15]
identified a nine node network which found a similar pattern of impairment involving con-
nections to precentral, paracentral, pallidum, frontal areas and the cingulate cortex. Our
results suggest that in ALS, connectivity to prefrontal, precentral, subcortical and some pos-
terior regions is substantially reduced, in terms of tract-averaged FA, and that these impaired
connections are predominantly localised around the motor cortex. However, the posterior
connections identified are not typically associated with ALS. We note that although NBS
reduces the false positive rate, tractography can still produce both false positive and false
negative connections. However, as the brain is a strongly interconnected system, it is also
possible that the degeneration of motor neurons may result in a distributed effect on the
brain network. These findings suggest that, though changes in structural connectivity may
be widespread in ALS, overall the degeneration is strongly linked to the motor cortex. It is
possible that these areas of reduced connectivity may underlie some of the cognitive impair-
ments associated with the disease.
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Abstract

This paper presents a novel approach for segmentation of Multiple Sclerosis (MS)
lesions in T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion re-
covery (Flair) Magnetic Resonance (MR) images. The proposed approach is based on
three-dimensional (3D) enhancement followed by false positive reduction methods and
3D alpha matting technique. The experiments on real MRI data shows the unsupervised
segmentation method can obtain better result than some state-of-the-art methods.

1 Introduction
Multiple Sclerosis is an inflammatory demyelinating disease of the central nervous system
which is the most common non-traumatic neurological disease in young adults. In clinical
practice, physicians use the segmentation results of MS lesions to analyze and estimate the
growth process of MS lesions and evaluate effects of some pharmaceutical treatments by
measuring various quantities. Some semi-automated and automated segmentation methods
have been proposed. Zeng et al. [1] proposed a two dimensional joint histogram modelling
for MS lesions to deal with the density overlap between normal and abnormal tissues. Sou-
plet et al. [2] combined EM and morphology post-processing of resulting regions of interest
to extract MS lesions. Geremia et al. [3] employed spatial decision forests to segment the
region of interests. However, most segmentation methods are still not accurate enough be-
cause of the noise, density inhomogenity, and partial volume effects in the MR images. As
a partial solution, we propose a segmentation method to segment MS lesions based on 3D
volume enhancement and 3D alpha matting.

2 Methodology
In the preprocessing, a mutual information based method [4] is used to register MRI T1-w,
T2-w and Flair images. Then a single slice with MS lesions is selected from the volume by
an expert. In the first step, the MS lesions in the fusion volume (T2-w and Flair) is enhanced
by using the enhancement function which is driven by the segmentation results. In the second
step, false positive VOIs are removed and potential MS lesions are detected. In the third step,
a 3D alpha matting method is utilized to achieve more accurate segmentation results.

c© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2.1 3D Volume Enhancement
Due to the MS lesions exhibiting hyper-intensity compared with other tissues in T2-w and
Flair, and the density of MS lesions in Flair can be better distinguished from CSF than in
T2-w, we fuse the T2-w and Flair volumes by using different weights ((1/2)T 2+Flair) in
order to enhance the density of MS lesions. Then the grey level values of the fusion volume
is normalized from 0 to 255. Considering the computing speed of the proposed algorithm, a
single slice with MS lesions is selected by an expert and utilized as a benchmark to enhance
the whole MRI volume. Specifically, the non-brain tissue of the single slice is removed by
using the BET toolkit [5]. Then the HMRF-EM method [6] is used to segment the brain tissue
with four groups which corresponding to cerebrospinal fluid (CSF), white matter (WM), grey
matter (GM), and background (BG), respectively. Then the group centers of WM and GM
defined as CWM and CGM can be estimated. Subsequently, the MS lesions in this slice are
enhanced by using an enhancement function E(x) which is defined as:

E(x) =
(

1
2

[
1+

2
π

arctan
(

I(x)−T
ε

)]
× I(x)

)
∗Kσ (1)

where I denotes the single MR image/volume, Kσ is a Gaussian kernel, ε is a constant,
T is defined as (CWM −CGM)/2. This function is also used to enhance the whole fusion
volume. With each iteration, the enhanced slice is segmented again, and the new parameter
T is estimated by using the new group centers. In each iteration, the enhancement function
which is driven by segmenting the enhanced slice is affecting the whole fusion volume. The
mutual information [7] which is estimated by using the enhanced slice in successive steps
is utilized as the iteration stopping criteria using an empirically determined threshold value
(δ ). Finally, the binary VOIs of MS lesions are obtained by using a small threshold value in
the enhanced 3D volume.

2.2 False Positive Removing
In the previous results, some false positive VOIs, such as skull, GM and areas between ven-
tricles, are also enhanced because of the hyper-intensity and density inhomogenity. False
positive VOIs are removed in this step. Firstly, we use the brain symmetry plane [8] to
logical and with the 3D enhanced VOIs in the previous steps. Then the skull and VOIs
between ventricles are removed by discarding the label which is connected with the sym-
metry plane. Secondly, as 95% of MS lesions occur within white matter tissue [9], the MS
lesions contained in WM is only considered in this work. Most of the WM segmentation
methods are time-consuming, because these methods need to remove the skull slice by s-
lice before segmenting the WM, such as [2]. In addition, these methods fail to consider
the whole volume information, and the density overlap between WM and other tissues may
lead to false positives in the WM segmentation results. In this work, a novel color seg-
mentation scheme is used to segment the WM volume. Specifically, we generate a color
MR volume by using T1-w, T2-w, and Flair volumes. Each R, G, and B channel corre-
sponds to T 1−w, T 2−w, and Flair MR image, respectively. Anatomic brain tissues can
be better distinguished in T1-w than the other MRI modalities [1], and the middle slice
in the T1-w MRI volume is selected. Then the non-brain tissue is removed [5] and the
HMRF-EM method [6] is utilized to segment the selected brain tissue without brain skull
into four groups which represents CSF, WM, GM, and BG, respectively. Subsequently, the
WM group is used as a mask and morphology is utilized to erode the WM mask in order
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to reduce false positives in WM caused by the segmentation errors. Then the eroded Mask
region are used as mask to extract the corresponding pixels of the same slice in the color MR
volume. Subsequently, we calculate the average value Rµ , Gµ , and Bµ in each color chan-
nel. For each color pixel I(Ri,Gi,Bi), we can calculate the distance ∆Ei between the pixel
and average color value as ∆Ei =

√
(Ri−Rµ)2 +(Gi−Gµ)2 +(Bi−Bµ)2. Then we define

a threshold Ttolerance = mean(∆Ei×Mask)+ std(∆Ei×Mask), where mean(·) and std(·) de-
note the mean and standard deviation values, respectively. Subsequently, we use the RGB
color in the corresponding region to estimate all other similar color regions. The acquired
values (Rµ , Gµ , Bµ ) are used to calculate ∆Ei for the other voxels in the whole volume. If
∆Ei 6 Ttolerance, the voxel will be segmented as WM. Finally, we remove all the VOIs outside
of the WM volume segmented by using the color segmentation scheme.

2.3 Refining the Segmentation Results
Another big challenge of lesion segmentation, along with the eliminating of false negatives,
is the uncertainty boundary of VOIs. This may be caused by partial volume effects and
the limitation on image resolution. We observe that the uncertainty boundary of a VOI is
caused by the fact that the boundary pixels are a mixture of foreground tissue (tumours) and
background tissue (normal tissue). In order to extract the MS lesions from the other tissues,
we introduce a 3D alpha matting technique [10] into the segmentation pipeline. Instead of
generating a 0 and 1 segmentation label, the alpha matting technique can generate a fractional
alpha value between 0 and 1 for these voxels, which can be viewed as more accurate soft
segmentation. In this work, the color MR volume is used to refine the segmentation results.
For each color voxel i, it would be convex combination of the foreground (F) and background
(B), which can be modelled as Ic

i =αiFc
i +(1−αi)Bc

i , where α is the transparency parameter,
c denotes the RGB color channel representing T 1−w, T 2−w, and Flair MRI. In [10], the
3D alpha matting was solved by using J(α) = αT Lα , where the L referred to as the matting
Laplacian. It is a square matrix of size N×N which captures the local color properties of
the input image containing N voxels. Its (i, j)th element is given as

∑
k|(i, j)∈wk

(
δi, j−

1
| wk |

(1+(Ii−µk)
(
∑
k
+

ε
| wk |

I3

)−1
(I j−µk))

)
. (2)

where δi, j is the Kronecker delta [10], µk and σ2
k are the mean and variance of the vector of

the colors in the window wk around k which is usually 3×3×3, and | wk | is the number of
pixels in the 3D window. If the size of the Laplace matrix L is too large when calculating the
whole volume, it will result in a large number of calculations. Therefore, the subcube is used
to segment the MS lesions instead of segmenting the whole volume. Before segmenting, a
trimap of MS lesions has to be generated at first, this separates the image into three regions
as shown in Fig. 1 Step 3: definite foreground F (show in color), definite background B
(show inside the pink rectangle, but not include the other color), and the unknown region
U (show in color, but not including the foreground). Our system automatically generates
this trimap. Specifically, we use 3D morphology to erode the previous segmentation result
with a spherical structuring element to obtain the foreground, then we dilate the 3D VOIs
and calculate its maximum bounding box. The rectangle region without the foreground is
used as the background. The unknown area can be generated by logical and the foreground
with the dilated VOIs. The details of the energy minimization process can be found in [10].
Solving the matting problem leads to a soft segmentation of VOIs in color MR volumes.
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3 Experiments

We evaluated the proposed method on the patient volumes from the CHB datasets [11]. The
ground truth of all the images is publicly available from the MS Lesion Segmentation Chal-
lenge 2008 website [11]. For each case, three MR modalities are made available (T1-w,
T2-w and Flair volumes) which are co-registered. Each modality contains 512 slices. The
voxel size is 0.5mm3. We take CHB case 01 as an example which is shown in Fig. 1. In
the first step, the T2-w and Flair volumes are fused by using (1/2)T 2+Flair. Then a slice
with MS lesions in the MR volume is selected by an expert, and the non-brain areas are
removed (see Fig. 1a). Subsequently, the brain tissue is segmented by using HMRF-EM [6]
(see Fig. 1b). According to the segmentation results, the parameters T in Eq. 1 is estimated
as 0.8. Then the 3D volume and the slice are enhanced (see Fig. 1c and Fig. 1d). In Eq. 1,
the parameters ε = 10 and σ = 7. In the second iteration, the enhanced image is segmented
again (see Fig. 1e). Fig. 1f is the enhanced volume and slice in the second iteration. As
the iteration increase, we calculate the mutual information of the enhanced slices in the suc-
cessive iterations, and the threshold value δ = 0.9 is used as the stopping criterion. In this
case, the processing of 3D volume enhancement is stopped at the fifth iteration. Fig. 1g
and Fig. 1i are the final enhanced result and the final enhanced volume, respectively. In the
second step, the symmetry plane (see Fig. 1j) is estimated and used to remove false posi-
tive regions, such as the skull. Then the WM (see Fig. 1l) is segmented by using the color
segmentation scheme. Then the 3D labels outside of the WM are removed. Fig. 1m shows
the false positive removed VOIs. In the third step, a trimap which contains foreground (see
Fig. 1n), background (see Fig. 1o), and unknown region (see Fig. 1p) is automatically gener-
ated. Subsequently, the alpha matting method is utilized to refine the previous segmentation
results by using the color MR volume (see Fig. 1q). To compare against the ground truth (see
Fig. 1t) which is a binary VOIs, we threshold the soft segmentation (see Fig. 1r) generated
by matting at half the maximum value for this volume, which leads to the final binary seg-
mentation of VOIs (see Fig. 1s). Fig. 2 shows our results for frontal, midsagittal, and sagittal
views, respectively.

Table 1: TPR, PPV and Dice index for MS lesions segmentation on CHB MRI datasets
Patient Ch. winner [2] Context-rich RF [3] Our method
Cases TPR PPV DSC TPR PPV DSC TPR PPV DSC
CHB01 0.22 0.41 0.29 0.49 0.64 0.55 0.68 0.65 0.66
CHB02 0.18 0.29 0.22 0.44 0.63 0.51 0.54 0.53 0.53
CHB03 0.17 0.20 0.19 0.22 0.57 0.31 0.32 0.59 0.41
CHB04 0.12 0.55 0.20 0.31 0.78 0.44 0.39 0.68 0.50
CHB05 0.22 0.42 0.29 0.40 0.52 0.45 0.48 0.51 0.49
All 0.18 0.38 0.24 0.37 0.63 0.46 0.48 0.59 0.52
SD 0.04 0.13 0.05 0.11 0.10 0.09 0.14 0.07 0.09

To evaluate the accuracy of a segmentation result, three measures (true positive rate (T-
PR), positive predictive value (PPV), and Dice similarity coefficient (DSC)) are used to e-
valuate the spatial accuracy of the segmentation result compared to the results of state-of-
the-art methods [2, 3] which are also test with CHB datasets [11]. When DSC=1, TPR=1, or
PPV=1 denotes exact overlap with the ground truth. We compare the TPR, PPV and DSC of
our method and segmentation methods [2] and [3] for real patient data in Tab. 1, which also
shows the overall mean (All) and standard deviation for all the cases (SD). In all the cases,
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Figure 1: A T1-w, T2-w, Flair example (Case 01) of MS lesions segmentation based on the
3D enhancement and 3D alpha matting.

Figure 2: Examples of the results of the proposed method on MRI from different views. The
first row shows the color MR images, the second row shows our segmentation results, the
third row shows the half height probability of the segmentation results, the fourth row shows
the ground truth.

our method shows improved results compared to the Ch. winner’s [2] method. In addition,
our results in the overall mean of TPR and DSC are better than [3].

4 Discussion and Conclusions
This paper presents a novel segmentation scheme based on 3D volume enhancement and 3D
alpha mating. Theproposedmethodhas threeadvantages. Firstly, the3D enhancement method
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can deal well with image noise, and density inhomogeneity within the MS lesions. Secondly,
the 3D alpha matting technique is introduced for the first time to color MRI segmentation,
which can effectively deal with partial volume effects. In the future, 3D bias field removal
could be investigated in a large clinical datebase. In addition, it should be noted that the use
of the CHB datasets [11] for evaluation is seen as positive, because the results taken from [3]
are calculated with a lower resolution, so a direct comparison to the proposed method might
be unfair. Therefore, we will further evaluate the proposed method with [1] on the same
public databases.
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Abstract 

By regarding medical image understanding as a form of visualization involving a 

Human-Computer Interface, the onus is on system designers to consider the specific 

capacities and constraints of the human perceptual system in the design of 

visualization systems. From the perspective of Cognitive Science, the design and 

evaluation of these systems must be informed by the results of Basic Science in the 

domains of Perception, Scene Understanding, and Perceptual-Motor Control. In this 

paper, we present the results of such an approach to the design of an Augmented-

Reality based visualization system for Neurosurgical Planning and Neuro-

Anatomical training. We hypothesize that the proposed AR system facilitates training 

of novice residents to plan tumour/hematoma resection interventions. To test our 

hypothesis, a number of experiments were conducted where subjects were asked to 

perform relevant spatial judgment tasks using three conventional visualization 

approaches as well as our proposed AR system. Our preliminary results indicate that, 

compared to traditional methods, the proposed AR system a) greatly improves the 

user performance in tasks involving 3D spatial reasoning about the tumour relative to 

the anatomical context, b)  reduces error associated with mental transformation, and 

c) supports generic spatial reasoning skills, over this range of sensory-motor tasks. 

1 Introduction and Clinical Motivation 

The primary goal of a visualization system is to represent data in such a way that relevant 

information is made explicit, facilitating comprehension. Learning 3D anatomical 

structures and spatial relationships sometimes requires the trainee to visualize anatomical 

structures from within, adding a level of complexity for the trainee as well as challenges 

for the design of visualization systems. One example is tumour resection interventions. 

Approximately 23,000 Americans and 2,800 Canadians were diagnosed with primary brain 

tumours in 2012, resulting in 13,700 and 1,800 deaths respectively [1] [2]. Compared to 

alternatives, surgical resection is the most recommended option [3] to treat brain tumours. 

Pre-operative planning involves identifying optimal surgical paths and entry points based 
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on a number of criteria in order to minimize post-surgery complications, and teaching 

these skills is a challenge. One must take into account functional areas, white matter tracts, 

and major vessels while planning a trajectory. Additionally, determining the shortest path 

from the skull to the tumour and aligning the surgical trajectory with the longest axis of the 

tumour, can further reduce damage. Formulating the optimal path and entry point demands 

the perception of and complex reasoning about spatial relationships between the tumour 

and other key structures. Conventional visualization approaches for planning these 

interventions involve examining 2D orthogonal slices of pre-operative MR images, but the 

inherent limitations of these 2D views and the reliance on more complex spatial reasoning 

can slow the process of planning and make it prone to error [4]. While it is clear that users 

can be trained to perform well on non-intuitive tasks, they are more prone to error added 

cognitive demands. Although this is not controversial, novel visualization methods are not 

generally evaluated against task-relevant user performance metrics, and in the following 

section we present a methodology for doing so.  

2 Materials and Methods 

The AR system is comprised of a head phantom and off-the-shelf AR eyewear (Vuzix 

920AR, Vuzix corporation, Rochester, NY), both of which are tracked using an optical 

tracking system (Polaris, NDI, Canada), (Figure 1). The Vuzix eyewear is equipped with 

twin cameras and displays to record and display stereo images. Tracking the head phantom 

and the Vuzix goggles allows for the correct fusion of virtual and physical spaces. Our 

visualization approach involves making use of a tracked stylus as a manipulandum. 

 
Figure 1: Our AR system includes Vuzix eyewear, a head phantom, and a tracked stylus 

Using a window-and-context paradigm [5], the tracked stylus controls a focus 

window in which a visual scene is visualized (Figure 2 (left)). Voxels in this window are 

rendered using direct volume rendering (DVR) and two-dimensional transfer functions (2D 

TF), a standard approach for reducing ambiguity and conveying subtle surface properties 

to the user [6]. Furthermore, early ray termination is explicitly triggered by an additional 

transfer function, which prevents rendering the volumetric data outside the focus window. 

This results in a keyhole-like aperture into the volume. The size of the aperture can be 

adjusted using a multifunction USB-knob (Griffin Tech., TN, US). Similar to virtual 

windows [7], the aperture reduces depth misperception to some extent, and draws attention 

to a region-of-interest while preventing cognitive overload [8]. Cel-shading, a non-

photorealistic shading technique, was used to enhance perception of object boundaries, 
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improving the use of occlusion as a perceptual cue. These boundaries are detected by 

sudden changes in the depth of penetration of the virtual rays, allowing areas of larger 

change to be shaded more heavily. It has been shown that enhancing contours using cel-

shading improves the perception of continuity and depth [9]. Distance shading is also 

employed, providing additional cues to relative depth. To further increase the usability of 

the system, the opacity of each individual tissue type (e.g. tumour, cortex), and the strength 

of the shading techniques are easily adjustable in the provided interface. 

 

Figure 2: Stereo images of the proposed AR (left) and VR system (right)  

While the AR mode provides a better understanding of the spatial relationship 

between the virtual data and the physical context, visualization of too much information 

through the key-hole aperture can lead to visual clutter. Therefore, we have incorporated a 

Virtual Reality (VR) mode in which virtual data can be visualized in its complete form by 

halting the early ray termination process (Figure 2 (right)). Additionally, specific DTI 

tracts and eloquent areas of the brain as well as a virtual representation of the stylus and its 

trajectory are also included. The location of these areas is crucial for planning tumour 

resection interventions as avoiding them mitigates the risk of post-surgical complications. 

Users can toggle the visibility of these tracts/regions within either hemisphere. A foot 

pedal was provided to participants allowing them to switch back and forth between these 

two modes, in order to benefit from both AR and VR. 

2.1 Experimental Methodology and Objective Metrics of Performance 

Phase 1 & 2: The objective of our evaluation process was to compare the user 

performance associated with conventional approaches against our AR system. 

Conventional techniques consist of two-dimensional slice-by-slice (2D), crossed-plane 

(XP), and three-dimensional volume rendering (3D) (Figure 3). Ten novices (8 Male, 2 

Female, all graduate students), participated in our validation study and were asked to 

perform a series of relevant spatial reasoning tasks while exploring data via available 

techniques. Experiments were conducted in two different phases. In the first phase, each 

task was defined to isolate one of the planning principles mentioned earlier in the 

introduction: 1) finding the maximal distance from the target to a nearby critical structure, 

and thereby avoiding it; 2) finding the shortest path to the target from the surface of skull; 

and 3) determining the longest axis of the target. Based on these criteria, subjects were 

asked to use of the head phantom and stylus to indicate the optimal entry point/surgical 
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path. Stimuli consisted of the head phantom's CT images which were modified to meet the 

requisites of each specific task. Simulated structures derived from patient anatomical data 

were used to increase the clinical validity, while target structures were simulated to 

increase our control over the experimental design.  

In the second phase, subjects were asked to perform the same tasks as the first phase, but in 

this stage, the ground truth entry points and surgical paths were provided as synthetic lines. 

  

Figure 2: Conventional visualization methods: a) slice-by-slice (2D), b) crossed-plane 

(XP), and c) three-dimensional direct volume rendering (3D) 

Our empirical methodology was designed; 1) to study the effect of different 

visualization approaches on user performance, and 2) to determine whether providing 

visual assistance can diminish the difference between available visualization techniques. 

Rotational error is measured as the deviation (in degrees) between the chosen and optimal 

paths. Translational error is measured as the Euclidean distance (in mm) between the 

optimal point of entry and that selected by participants (Figure 4). 

Phase 3: Although the first two phases may demonstrate the efficacy of the 

proposed system in assisting subjects in performing simple spatial tasks, the efficacy of the 

AR environment within a clinical context is still questionable. Thus, we extended our 

evaluation to include clinically relevant data and expert neurosurgeons and neurosurgery 

residents. In order to increase the statistical power, a large set of patient-specific images 

was required. Tumour data (randomly selected from a set of previously segmented 

tumours
1
) was added systematically to different regions of an MRI dataset. Similar to the 

previous phases, each subject was asked to perform two tasks: finding the point on the 

skull with shortest-distance to tumour, and the tumour’s longest axis estimation.  

3 Results and Discussion 

Phase 1 and 2 involved 12 trials (3 tasks x 4 visualization methods) where participants (n = 

10, no prior training) were presented with a randomized collection of synthetic data. Phase 

3 involved 64 trials
2
 (32 trials per task) in which the patient MR data was randomly 

selected from the database and displayed in the 4 different modalities described earlier.To 

minimize the effects of learning and fatigue, the stimuli, the visualization mode, and the 

task were all randomized. The user overall performance was calculated by averaging the 

rotational and translational error over each visualization technique.  

Phase 1: A multivariate ANOVA test indicated that the mode of visualization 

was indeed significant in the first phase (rotational error: p<0.05, translational error: 

p<0.05). This level of significance was derived from the Šidák correction which would  

                                                           
1 DTI challenge workshop, MICCAI 2010-11 
2 48 trials for one of our experts 
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Figure 4: Rotational/translational errors as metrics to measure users' performance 

 

lead to a combined level of significance of 1%. No interaction effect between visualization 

method and task was observed. Post-hoc analysis using Tukey HSD test indicated that the 

difference between 2D/XP visualization environments and 3D/AR were statistically 

significant. However, the difference between the 3D and AR environments was not 

statistically significant. Therefore, it can be concluded that when there is no visual 

assistance, a) the method of visualization significantly affects the user performance error, 

and b) the impact of method of visualization is not affected by the task performed (and 

vice versa). This indicates the generic usability of the visualization regardless of task. 

Significant improvement of performance in AR/3D demonstrates that 3D perception of the 

target location/orientation in 2D/XP can be facilitated with appropriate visualization 

methods. 

Phase 2: Unlike the previous stage, significant interaction among factors was 

observed, i.e. the magnitude of difference between environments depends in part upon the 

task performed. A test of significance for each revealed that most interactions occur in 2D, 

XP, and 3D environments. This indicates lower usability scores for these environments. 

Additionally, the increased variation in rotational and translational error in 2D and XP 

illustrates the veridicality of 3D and particularly AR environments. Significant 

improvement of performance in AR while providing visual assistance illustrates that the 

AR mode of presentation reduces the mental transformation load in the 2D/XP/3D modes. 

Phase 3: Speed-accuracy trade-off was taken into account by calculating the 

index of performance ( 




 errorEffective2time

2log1 
p

I ) in accordance with Fitts’ 

methodology [10]. Our preliminary results show that for the longest axis task, Ip was 

significantly higher (p < 0.05) in AR compared to 2D and XP (µAR= .093, µ3D=.066, 

µ2D=.045, µXP=.035), and for the shortest axis, it was significantly higher in AR and 3D 

compared to XP (µAR= .085, µ3D=.073, µ2D=.055, µXP=.040). All subjects with a 

neurosurgery background performed better in all visualization modalities with the 

exception of AR for identifying the longest axis where novices performed better than 

residents. 

4 Conclusion 

Locating structures such as tumours and tracts and perceiving the spatial relationships 

between them is necessary for successful neurosurgical planning, which is heavily 

influenced by the visualization and interaction in the planning environment. In this study, 

we investigated whether performing these spatial tasks could be facilitated by visualizing 
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MR images through DVR in an AR environment. We conducted a number of experiments 

where subjects performed relevant spatial judgment tasks under four different visualization 

approaches. Our preliminary results indicate that, AR environments could improve spatial 

reasoning with respect to clinically-relevant tasks, for trainees. Phase 3 data illustrates the 

potential of using AR in neurosurgical training. However, more number of subjects is 

required to increase the power of such study. Nevertheless, the proposed work has the 

potential to improve the quality of tumour resection planning purely from the perspective 

of perceptual enhancement, despite the fact that it does not trump skilled observational 

training. When using AR and 3D modes, the performance of the novice group is enhanced. 

Performance in the AR environment is more independent from the specific spatial tasks 

indicating that this presentation of visual information has enhanced utility for generic 

tasks.  
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Abstract

Sparse landmark tracking can provide sparse, anatomy-specific constraints to help
establish correspondences between images being tracked. We propose to identify the
landmarks that are distinctive throughout the cardiac cycle and have a relatively large
deformation by a method that analyses the entropy of the self-similarity through singu-
lar value decomposition (SVD). We then track this sparse set of landmarks simultane-
ously with a 4D two-stage multiple label Markov Random Field (MRF). The framework
is evaluated on 47 cases, including data from normal volunteers and patients undergo-
ing cardiac resynchronization therapy (CRT). Compared to conventional dense motion
tracking (DMT), the tracking error of the proposed sparse motion tracking (SMT) and
the DMT initialized with the result of SMT are both reduced by 15.7% and 4.2% respec-
tively. The derived regional wall thickness systolic dyssynchrony index (SDI) for each
of the 47 cases agrees well with the clinical measurements of regional volume SDI.

1 Introduction
The accurate estimation of cardiac motion aids the quantitative assessment of both global and
regional wall deformation or strain, which is beneficial for the identification of the location
and extent of diseases like cardiomyopathy and ischemic injury [2]. Approaches based on
dense image registration and deformable model fitting techniques [6, 8] are very sensitive to
the initialization and often computationally expensive. Alternatively, sparse landmarks can
provide anatomy-specific constraints to establish correspondences between images being
tracked or registered [3]. However, landmarks on the endocardium are often characterized
by ambiguous appearance in cardiac MR images, which makes the extraction and tracking
of landmarks problematic.

In this paper, we propose to identify a sparse set of cardiac landmarks that are distinctive
throughout the cardiac cycle and have a relatively large deformation by an entropy-based

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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measure of self-similarity and singular value decomposition (SVD). We then track this sparse
set of landmarks simultaneously by a 4D two-stage multiple label Markov Random Field
(MRF), which enforces motion coherence across space and time.

The accuracy of the proposed sparse motion tracking is evaluated by tracking a group of
manually marked landmarks on the endocardial border of the left ventricle (LV) in a dataset
of 47 MR image sequences and comparing to their manually tracked positions. To study
the clinical usefulness of the approach we assess the regional systolic dyssynchrony index
(SDI). The derived regional wall thickness SDI for each of the 47 cases are compared with
the clinical regional volume SDI measurements obtained using the TomTec system [5].

2 Detection and tracking of cardiac landmarks

2.1 Sparse Landmarks Identification
The motion of the heart is highly complex and is mostly characterized by the deformation of
the endocardium. We initially identify a set of landmarks on the endocardial boundary and
thereafter their counterpart on the epicardial border along the radial direction.

Many points on the endocardial boundary share similar appearance and shape features,
which leads to ambiguities when these points are being tracked. We use an entropy-based
landmark detector to identify landmarks that are recognizable in all frames throughout the
cardiac cycle. For each point in the end diastolic phase, the detector defines a similarity at
each location within a search region in all other frames. A low entropy of the distribution of
these similarities corresponds to a more discriminative feature point.

Moreover, we are more interested in points that undergo relatively large deformation; by
tracking them we are likely to capture the cardiac motion more accurately. A regional SVD
based approach is applied to distinguish points with relatively large deformation from those
which exhibit less complexity across frames. SVD seeks to find a low rank approximation.
Different regions of a cine sequence may have different approximation levels due to the non-
uniform complexity of the whole image and lower approximation ratios corresponding to
regions with larger deformations, such as mitral valve point and apex. By combining the
entropy and SVD based method, we select a set of sparse landmarks along the endocardial
which best represent the myocardium. This part of work is same as that of Wang et al. [9].

2.2 Sparse Motion Tracking
After we have identified a set χ of distinctive landmarks in ED phase, our goal is to localize
the corresponding landmarks in each frame of the cine sequence. Let the whole sequence of
the image be modelled as a 4D MRF in which nodes are located pairwise at the endocardial
and epicardial borders. The neighbourhood of each node in slice k and frame t includes
not only the neighbouring nodes in the same slice, but also those in slices k+ 1 and k− 1.
In addition, the neighbourhood also includes temporal neighbours, i.e. the corresponding
voxels at frame t +1 and t−1 respectively. We call these neighbouring edges as endo-endo,
epi-epi, endo-epi, slice-slice and frame-frame edges. In our implementation, a total of seven
neighbours are used for each landmark with the exceptions of landmarks in the first or last
slice (or frame) of the short-axis image stack.

We associate each label of a node with displacements from its original position and
formulate the multiple landmark tracking in a multi-label MRF framework in which we
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Figure 1: The tracking of a point Pn is modelled by a two-stage searching: a) towards centre
O and b) towards/away from neighbouring points Pn+1 and Pn−1.

minimise the following energy function:

E = ∑
i∈χ

Vi(xi)+ ∑
(i, j)∈χ

ωi jVi j(xi,x j) (1)

For the landmark tracking, the unary potential Vi(·) is defined by the patch-based simi-
larity metric based on sums-of-squared differences (SSD) to compute the intensity similarity
between the landmark under study and its candidate matching point:

Vi(xi) = ∑
Ωx,Ωy

ωi(xi− yi)
2 (2)

Here Ωx and Ωy denote the local patches centred around point xi and its candidate match-
ing point yi respectively. During the cardiac cycle, the myocardium may undergo thickening
and the regions outside myocardium usually remain unchanged. To compensate for this my-
ocardial thickening the SSD metric is spatially weighted and the weighting function ωi is
built to a) be zero outside the myocardium, b) increase the influence of the blood pool for the
landmarks at the endocardial border and c) be zero inside the myocardium for the landmarks
at the epicardial border to ignore the influence of the wall thickening.

The pairwise potential Vi j(·) of the energy function models the interaction between land-
marks to enforce the smoothness, both spatially and temporally. Vi j(·) is defined as the
Euclidean distance of the displacements D(x) of a pair of neighbouring points.

Vi j(xi,x j) = |D(xi)−D(x j)| (3)

The intuition of this term is to maintain a coherent motion between points close to each
other. The magnitude of the constraints between neighbouring points is weighted by ωi j,
which varies according to the location of the point. For instance, the motion of a point at
endocardial border correlates much stronger with that of its endocardial neighbours than that
of its epidardial neighbours, hence the weight for the endo-endo edge is larger than that for
the endo-epi edge.

The tracking is conducted in two stages: firstly along the direction towards the centre of
the LV, and then along the direction towards or away from its two neighbouring points. The
centre of the LV is defined as the intersection point of the middle slice of the short axis (SA)
image and two LA images.
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In the first stage of tracking, the main components of the deformations, i.e. the radial mo-
tion of the myocardium in the short axis slices, are best captured along the direction from the
landmark towards the centre. The pairwise smoothness term is therefore defined as the Eu-
clidean distance of the relative displacement along this direction of two neighbouring points.
In the second stage of tracking, we track points in a 2D region along the direction towards
or away from their neighbouring points in order to take into account the circumferential mo-
tion along the border. The penalty increases when two neighbouring points move towards or
away from each other. Likewise the penalty decreases when the two points move in the same
direction. The second stage of the tracking iterates several times to account for the large
circumferential deformation in some cases, because the position of the search region needs
to be updated after each iteration. At both stages, Fast-PD, a graph cut based algorithm is
applied as the optimisation method to find the optimal solution for the MRF problem [4].

3 Evaluation and results
We have acquired SA sequences from 44 CRT patients and three normal volunteers using a
1.5T MR-scanner. Five landmarks are manually marked on the endocardial boundary in the
middle slice at ED phase. In addition their corresponding positions are marked at the end
systolic (ES) phase. The positions of these five landmarks at ES phase are also automatically
tracked by the proposed sparse landmark motion tracking. Thereafter, the accuracy of the
motion tracking is computed as the distance between the tracked position of the landmarks
and their corresponding manually marked position at ES. For comparison we also tracked
the landmarks using dense motion tracking (DMT) (using non-rigid registration [6]) with
and without being initialised by the result from sparse motion tracking (SMT). The average
tracking errors in terms of root mean square (RMS) using the two approaches are shown in
Table 1. It can be seen that both SMT and DMT initialized by SMT outperform the DMT in
this dataset. Figure 2 shows the case-by-case tracking errors of the three methods.
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Figure 2: The landmark tracking errors (mm) for 47 cases, using DMT, SMT and DMT
initialized with SMT

The LV contraction synchrony can be estimated via the change of wall thickness[7]. As
the landmarks at the endocardial and epicardial boundaries are automatic selected in pairs
along the radial line and tracked throughout the whole cardiac cycle, we can compute the
change of the myocardium wall thickness as the Euclidean distance between pairs. For each
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Table 1: Landmark Motion Tracking Error
DMT Sparse motion tracking DMT initialized by SMT

RMS 2.41±1.22mm 2.03±1.05mm 2.31±1.22mm
Improvement - 15.7% 4.2%
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Figure 3: This figure shows the wall thickness changing curves from (a) a normal subject
and (b) a CRT candidate.

of the 16 segments of the left ventricular myocardium according to American Heart Associ-
ation (AHA) model [2] there are around 2 to 8 endocardial-epicardial pairs of landmarks in
our experiment. We average the distances at each of the 16 segments and view this as the
wall thickness of that segment. Figure 3 demonstrates the change of the myocardium wall
thickness of each of the 16 segments throughout the whole cardiac cycle from a normal vol-
unteer and a patient respectively. As shown in the figure, the wall thickening for the normal
volunteer is more synchronous across the segments.

The synchrony of the regional deformation can be represented by systolic dyssynchrony
index (SDI), which has been previously reported to be a good indicator for selecting patients
who respond to CRT [1]. The SDI is defined as the standard deviation of the time taken
to reach the minimum systolic volume or maximum function for the 16 LV segments. We
use a commercial software tool (TomTec 4D LV analysis tool V2.0 [5]) which relies on
manual tracking within tri-plane projections and semi-automated border detection, to obtain
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Figure 4: Evaluation of wall-thickness SDI against the Tomtec’s regional volume SDI.
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16 segments regional volume SDI for all the 47 cases. For comparison, we calculate the
wall thickness SDI in a similar way: For the average wall thickness of the 16 segments
throughout the cardiac cycle, the wall thickness SDI is defined as the standard deviation of
the phases to reach the maximum wall thickness for each of the 16 segments, expressed as
a percentage of the cardiac cycle. We also computed the Pearson correlation coefficient to
measure the correlation with the regional volume SDI obtained by the TomTec software,
which is corrcoe f = 0.73. The comparison of the two SDI indexes, as shown in Figure 4,
illustrates high correlation between them. It shows that it is plausible to use the proposed
sparse motion tracking to estimate the dyssynchrony index for the regional deformation.
Acknowledgements. This work was funded in part by EPSRC grant EP/H019847/1.
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Abstract

The characterization of myocardial scar tissue in Late Gadolinium Enhancement
(LGE) MRI volumes is hampered by the non-quantitative nature of MRI image inten-
sities. Using the widely available Look-Locker (LL) sequence a T1 map can be created
per patient to calibrate the LGE datasets. However, during the LL acquisition, the my-
ocardium is imaged at different phases of the cardiac cycle, resulting in deformations
between frames of the LL stack and preventing accurate T1 map estimates.

In this paper a method is proposed for the concurrrent non-rigid alignment of the LL
stack that uses a model of the exponential contrast development throughout the LL stack.
The model based alignment is shown to be more robust than a pairwise mutual informa-
tion based alignment. More importantly, correlations between the relaxivity (R1) map
and the LGE intensities (needed for the LGE calibration) are higher using the proposed
alignment than when using manual annotations.

The model based alignment allows the use of the LL sequence for LGE calibration
without manually annotating the (typically) 33 frames in this sequence. Thereby the
proposed calibration in feasible within clinical studies and eventually diagnosis.

1 Introduction
Scarring of myocardial tissue is often diagnosed using Late Gadolinium Enhancement (LGE)
MR images. Although an LGE volume generally shows good contrast between infarcted and
non-infarcted myocardium (Figure 1), the non-quantitative nature of the LGE acquisition
gives rise to differences in appearance that may influence the estimated infarct size.

To calibrate the LGE acquisition, recently quantitative T1 mapping techniques have been
proposed, particularly based on the Look-Locker (LL) and MOLLI (a modified Look-Locker,
requiring an extra acquisition) sequences [3]. These sequences image the heart (after contrast
injection) at multiple inversion times (TI) and estimate a T1 by fitting an exponential model

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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through corresponding pixels (Figure 1). The inverse T1 map, the relaxivity (R1) map, has a
nearly affine relation with the intensities in the LGE acquisition [2].

To avoid an extra acquisition we propose to calibrate the LGE volume using the LL
sequence. This low-resolution sequence is by default acquired before an LGE acquisition to
estimate an appropriate inversion time (TI) for nulling out the healthy myocardium.

However, contrary to MOLLI, LL frames are acquired at different phases of the car-
diac cycle. Alignment of the LL stack is not trivial as contrast differs considerably between
frames. Currently the alignment problem is mainly solved by manual contour annotation of
all (typically 33) frames in an LL sequence. Recent work on the alignment of (contrast vary-
ing) cardiac MR perfusion images uses independent component analysis in patients at rest
[5] and free breathing [8] and frequency domain based registration in patients under induced
stress [1]. These methods, however, only use a rigid alignment and use limited knowledge of
the process that causes the contrast change. The LL contrast change is accurately described
by an exponential model with an offset, similar to [7], but this method does not allow the
inclusion of a spatially varying constant term in the exponential.

To enable the use of the readily available Look-Locker sequences for a reliable quantifi-
cation of scar tissue in LGE a new method is proposed in this paper to simultaneously align
the Look-Locker and estimate the model parameters. This method limits the user-input to the
annotation of a single myocardium in the LGE slice and is validated on scans of 25 patients.

2 Methods

2.1 Calibration of late Gadolinium enhancement MRI

In standard MR protocols, the Look-Locker sequence is performed after contrast injection
and precedes the LGE sequence to determine the optimal inversion time (TI), for which the
healthy myocardium is nulled out. The LL sequence acquires images using different TI’s to
estimate the entire MR relaxation process (Figure 1). In general the Look-Locker sequence
has a lower acquisition resolution than the LGE acquisition.

The absolute intensities in the LGE are not directly related to tissue specific T1 times
such as 338.9±44.1ms for viable tissue and 264.8±35.3ms for fibrotic tissue [4]. However,
by scanning corresponding frames in both LL and LGE sequences, the LGE intensities can
be calibrated. Assuming that pixelwise correspondence is available between all frames of the
LL sequence and the corresponding LGE slice, a T1 map can be obtained by least-squares
fitting an exponential function ft to the intensities it per TI for each pixel:

i(t)≈ f (t) = a−be−t/T 1∗ (1)

where t is the TI used for one of the frames in the LL stack. When fitting, one should take
into account that only absolute intensity values are measured, as in the example curve in
Figure 2(a). From this, the T1 value can be obtained as [4]:

T 1 = T 1∗ ((b/a)−1) (2)

and R1 as 1/T1. The R1 map is then related to the intensities in the LGE slice by sam-
pling both the R1 values and corresponding LGE intensities between the annotated contours
(Figure 1) and performing a linear regression between LGE intensities and the R1 values [2].
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Figure 1: Left: Example LGE slices from three patients, where annotated epi (green) and
endo (red) contours denote the mycardium. Infarcted tissue in the myocardium is bright (high
Gadolinium uptake), non-infarcted tissue is dark, but the absolute values (see colorbar) vary
widely. Right: Example LL frames corresponding to the leftmost LGE slice

2.2 Model based Look-Locker stack alignment
The fitting in (1) requires alignment of all frames within the LL stack. The final calibration
also requires alignment between the LL stack and the LGE slice to account for patient motion
and cardiac phase differences. We propose to first align all frames within the LL stack and
subsequently register this stack to the LGE slice using the fit (1).

Mewton, et al. [4], for example, show that the exponential model (1) closely approxi-
mates the actual intensity values (See also Figure 2(a)). Therefore it is to be expected that
in the case of misalignment the fitting error increases. When using a least-squares fitting to
obtain an estimated model fx (t,θ) at each pixel location x with intensities ix(t,θ), the error
to be minimized by adapting the transformation parameters θ becomes:

C = ∑
x∈Ω

∑
t∈Ti

‖ix(t,θ)− fx(t,θ)‖2
2 (3)

where Ω is the image domain and Ti is the set of inversion times in the LL stack. Both
ix(t,θ) and fx(t,θ) are affected by the transformation parameters θ . In this work a b-spline
deformation model is used to parameterize the non-rigid transformation, regularized with a
bending energy penalty [6]. B-spline spacing was experimentally determined to be optimal
in the order of 16 mm with a low bending energy penalty such that only severe local defor-
mations were suppressed. Because of the large number of model parameters to estimate (per
pixel: a, b, and T 1∗), an expectation-maximization approach is used to minimize C: alter-
natingly the models fx (t,θ) are estimated (in closed form) and the frames of the LL stack
are registered. Convergence to a local minimum is guaranteed as both steps minimize C (3).

The registered LL stack and the fit model are aligned with the corresponding LGE slice
by generating an artificial image I f from the fit model using the same inversion time t as
used for the LGE acquisition. Normalized cross correlation is used as similarity measure.
The transformation model is the same regularized b-spline as during the LL stack alignment.
All registrations are performed using elastix (www.elastix.org).

3 Experiments

3.1 Data description
Data from 25 patients was acquired using a 1.5-T MRI scanner (Gyroscan ACS-NT, Philips
Medical Systems, Best, The Netherlands). A Look-Locker sequence was acquired 15 min-
utes after injection of gadolinium DPTA. The slice in the LL sequence contained the my-
ocardium part where scar was expected. Typically 33 LL frames were acquired at uniformly
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Figure 2: (a) Example model fits from samples in the frames in Figure 1 at the red (scar) and
green (healthy) annotated points that describe the relation between TI and signal intensity,
including T1 estimates. (b) Average Dice coefficients per slice after the proposed model
based alignment. Error bars denote standard deviations.

spaced inversion times, with T1-weighted LGE images three to four minutes later. The re-
construction pixel sizes of both the LL and LGE acquisitions was 1.56×1.56 mm.

3.2 Registration accuracy

The registration accuracy of the proposed alignment method was evaluated by manually
annotating the contours of the myocardium in the original LL stack and evaluating the align-
ment of these contours after registration. To this end, the Dice coefficients of the area be-
tween the epi and endo contours of the middle slice and each of the other frames were
computed as well as the distances between contours. The latter were estimated as distances
between closest points with both contours used for closest point search. These numbers were
compared to aligned LL stacks that were obtained by pairwise registering the frames of the
LL stack to the middle slice using normalized mutual information as similarity criterion.

After the model based alignment the mean Dice coefficients over all 33 frames of 25
patients was 0.76 with a standard deviation (SD) of 0.09 (Results per frame in Figure 2(b)).
The mean pairwise Dice coefficient was lower, at 0.70 (SD 0.16). A clear trend was visible
in both the model based alignment and the pairwise results, where especially the frames for
low inversion times (and low constrast) were less accurately registered. The average epi and
endo contour distances after model based alignment were 2.7 (SD 1.0) and 2.1 (SD 0.7) mm,
respectively. For the pairwise registration these numbers were 3.6 (SD 2.0) and 2.8 (1.7)
mm, respectively. The contour distances also showed the worst results for small inversion
times. For the pairwise registration, larger errors tended also to occur for the endo contour
for larger inversion times, even excluding the scar tissue as in Figure 3(a).

3.3 Correlation between T1 map and LGE intensities

The suitability of using the automatically aligned LL stack for the calibration of LGE slices
was investigated by computing the correlation between the R1 map and the intensities of the
LGE slice in the myocardium as annotated in the LGE slice. Furthermore the fitting errors
are reported for both aligned (model based and pairwise) and manually annotated LL stacks.
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Figure 3: (a) Example with correctly propagated contours (model based) and incorrectly
propagated contours (pairwise). (b,c) Correlation between R1 maps and LGE intensities for
three different alignment methods: (b) manual vs. model based (c) manual vs. pairwise.

The measured correlations between the R1 map and the LGE intensities for the 25
datasets are in Figure 3 for all three methods. The average correlations over the 25 datasets
were 0.79 (model based, SD 0.11), 0.70 (pairwise, SD 0.18) and 0.75 (manual, SD 0.12).
Figure 3(b) shows that in a patient by patient comparison the model based approach tended
to give higher correlations between R1 map and LGE intensities than the manual method,
while the Figure 3(c) showed poor correlations for the pairwise alignment. The model based
correlations were statistically significantly (P<0.05) higher than after pairwise alignment but
not statistically significantly higher (P=0.078) than when based on the manual annotations.

Due to large differences in intensities between LL stacks of different patients, reported
fitting errors are normalized to the average intensities. The mean fitting errors were 0.157
(model based, SD 0.025), 0.163 (pairwise, SD 0.025) and 0.167 (manual, SD 0.025). Using a
pairwise t-test, the fitting errors were statistically significantly (P<0.05) smaller when using
the proposed model based alignment, compared to both other methods.

4 Discussion

To calibrate late Gadolinium enhancement acquisitions of myocardial scar tissue using read-
ily available Look-Locker sequences, an alignment method was proposed that uses a model
of the LL intensity dependence on the inversion time.

The accuracy of the model based alignment compared favourably to a pairwise regis-
tration using manually drawn contours as the ground truth. Especially in low contrast LL
frames the model based alignment was more robust than the pairwise alignment. The robust-
ness of the model based alignment can be appreciated from Figure 4 where the LL sequence
is correctly aligned despite a clear artifact.

Correlations between R1 maps and LGE intensities showed higher correlations based on
the model based alignment than from manual annotations and especially compared to the
pairwise alignment. Although the relation between the R1 map and the LGE intensity values
is only approximately linear, the high correlations, despite the noisy images, showed that the
aligned LL sequences are indeed suitable for LGE calibration. This is further illustrated in
Figure 4 where scar tissue is identified by simply thresholding the LGE intensities based on
their correlation with the R1 map. Although a better segmentation procedure is needed to
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LGE LL TI=237 LL TI=237LL TI=626

Figure 4: Left: LGE slice and corresponding LL frames with artifacts. The contours in the
LL frames are propagated from the LGE slice. Right: The example LGE slices from Figure 1
with identified scar (red) and healthy (green) tissue through a simple thresholding T1 values
at (338.9+264.8)/2 = 301.9 (See the T1 values in Section 2.1)

reliably identify the scar tissue, this shows that using the proposed alignment and calibration
scars can be identified robustly in LGE acquisitions with greatly varying intensity ranges.

The implementation of the current expectation-maximization is non-optimized and re-
quires approximately 15 minutes per sequence for about 20 iterations. In future work this
implementation will be improved, expecting a 10-fold reduction in computation time.

The improved R1 vs. LGE correlations compared to manual annotations were especially
encouraging because the manual annotation of the 33 frames is no longer needed. This may
greatly help the introduction of calibrated myocardial scar tissue quantification in the clinic.

References
[1] V. Gupta, M. van de Giessen, et al. Robust motion correction in the frequency domain of

cardiac mr stress perfusion sequences. In MICCAI 2012, volume 7510 of LNCS, pages
667–674. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-33414-6.

[2] P. Kellman and A. E. Arai. Imaging sequences for first pass perfusion – a review. J
Cardiovasc Magn Reson, 9(3):525–537, 2007.

[3] D. R. Messroghli, K. Walters, et al. Myocardial T1 mapping: application to patients
with acute and chronic myocardial infarction. Magn Reson Med, 58(1):34–40, Jul 2007.

[4] N. Mewton, C. Y. Liu, et al. Assessment of myocardial fibrosis with cardiovascular
magnetic resonance. J Am Coll Cardiol, 57(8):891–903, Feb 2011.

[5] J. Milles, R. J. van der Geest, et al. Fully automated motion correction in first-pass
myocardial perfusion mr image sequences. IEEE Trans Med Imaging, 27(11):1611–
1621, Nov 2008.

[6] D. Rueckert, L. I. Sonoda, et al. Nonrigid registration using free-form deformations:
application to breast mr images. IEEE Trans Med Imaging, 18(8):712–721, Aug 1999.

[7] M. van de Giessen, A. van der Laan, et al. Fully automated attenuation measurement and
motion correction in flip image sequences. IEEE Trans Med Imaging, 31(2):461–473,
Feb 2012.

[8] G. Wollny, P. Kellman, et al. Automatic motion compensation of free breathing acquired
myocardial perfusion data by using independent component analysis. Med Image Anal,
16(5):1015–1028, Jul 2012.

44



PERESSUTTI et al.: PERSONALISING CROSS-POPULATION RESPIRATION MODELS 1

Personalising cross-population respiratory
motion models using anatomical features
Devis Peressutti
devis.peressutti@kcl.ac.uk

Graeme P. Penney
graeme.penney@kcl.ac.uk

Christoph Kolbitsch
christoph.kolbitsch@kcl.ac.uk

Andrew P. King
andrew.king@kcl.ac.uk

Division of Imaging Sciences and
Biomedical Engineering,
King’s College London, U.K.

Abstract
Subject-specific motion models have been proposed to address the problem of res-

piratory motion in image acquisition and image-guided interventions, but the need for a
dynamic calibration scan to form the model can interrupt the clinical workflow. Cross-
population models require no such calibration scan but lack the accuracy of subject-
specific models. To address these problems, we propose a novel personalisation method
for cross-population respiratory motion models. Unlike previous approaches, our method
selects a subset of the population sample that is more likely to have similar respiratory
motion to that of a new subject. The selection is based on anatomical features and there-
fore exploits inter-subject variability in motion to improve the accuracy of the resulting
model. We present results on cardiac respiratory motion using a sample of 23 MRI
datasets from healthy volunteers. Results show improvements in the median/95th quan-
tile of the motion estimation error of 20/17.2% compared to a standard cross-population
model and accuracy comparable to subject-specific models for some subjects.

1 Introduction
Respiratory motion currently limits the accuracy of image-guided interventions applied to
organs in the chest and abdomen, causing misalignments between the static images used for
guidance and the moving anatomy. A similar problem exists in image acquisition where res-
piratory motion can cause artefacts in acquired images. As described in [6], subject-specific
respiratory motion models represent a promising solution. Motion models describe the re-
lationship between the motion of the anatomy and some measurable surrogate data. When
forming the model, the surrogate data are acquired contemporary to dynamic calibration
images depicting the respiratory motion of the anatomy, and the motion is then modelled
as a function of the surrogate data. During model application, only the surrogate data are
acquired, and the model estimates the motion given the current surrogate data [6].

The dynamic calibration scan used to build the subject-specific model is typically ac-
quired using Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), depend-
ing on the application. However, the calibration scan is often impractical or even impos-
sible to acquire, due to dose issues, high cost, and patient considerations, such as bariatric

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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patients or patients with MRI-incompatible implants. To overcome these limitations, cross-
population models have been proposed for the lungs [2, 5] and liver [8, 9]. These models
require no dynamic calibration scan and are formed from data acquired from different sub-
jects, averaging out the inter-subject variation in motion [6]. Typically, the cross-population
average motion model is personalised to an individual by registering a static population
anatomy image to a corresponding image of the new subject, and transforming the mo-
tion model accordingly. However, since respiratory motion can differ dramatically between
subjects, cross-population models are currently not as accurate as subject-specific models.
In [9] a technique was proposed for more selective personalisation based on surrogate sim-
ilarity for the purpose of making more accurate estimates of respiratory drift. However, to
date no work has demonstrated a personalisation technique that results in more accurate mo-
tion models based on information from static images alone. Because of these limitations of
subject-specific and cross-population models, there is still only one example (the Cyberknife
Synchrony system) of clinical translation of a motion model-based technique [10].

We present a framework for the personalisation of cross-population models that ad-
dresses these limitations. Our framework eliminates the need for a dynamic calibration scan
and provides motion estimates that are more accurate than those produced by a standard
cross-population model. This is achieved by learning the relationship between a vector of
anatomical features and the respiratory motion.

2 Methods and Materials
Our method is schematically represented in Figure 1(a). The input of the personalisation
process is a high resolution image of the anatomy of a new unseen subject, while the output
is a personalised respiratory motion model.

The cross-population model is formed as follows. Given a population sample of N
datasets consisting of a high resolution image of the anatomy, a dynamic calibration scan
depicting the respiratory motion and some surrogate data (see Section 2.1), an average atlas
of the anatomy is built using the N high resolution images, as proposed by [2, 5]. The respi-
ratory motion estimates derived from the N dynamic calibration scans and surrogate data are
then transformed to the atlas coordinate system to produce a motion atlas. This motion atlas
can subsequently be used to form a respiratory motion model. Unlike the cross-population
models proposed thus far [2, 5, 6, 8] where an average motion model of the N datasets is
used for any new unseen subject, we select a sub-set K of the population sample which is
more likely to represent the respiratory motion of the new unseen subject. In order to de-
termine K, we compare the respiratory motions of the N subjects in the motion atlas and
cluster them according to their similarity. A classifier is then trained to learn and exploit
the relationship between anatomical features derived from a static image and the respiratory
motions. The underlying hypothesis is that anatomical features can be used as predictors
of respiratory motion. To the authors’ knowledge, this is the first work to investigate such
a hypothesis. The idea is that, given a high resolution image of a new unseen subject, the
classifier will return the sub-set K that best describes the new subject’s respiratory motion.
This way, the inter-subject motion variation will be exploited to obtain motion estimates that
are more accurate than standard cross-population model estimates.

2.1 Materials
A sample of 23 cardiac MRI datasets acquired from healthy volunteers was used for this
study. All images were acquired using a 1.5T Philips Achieva MRI scanner. The details of
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Figure 1: (a) Overview of the proposed personalisation framework. (b) Clustering of the N
population respiratory motions based on their similarity.

the high resolution 3D MRI volume and dynamic 3-D MRI calibration scan used for forming
the motion model are:

• Dynamic 3-D calibration scan: 3-D TFEPI, ECG-triggered and gated at late diastole, typically
20 slices, T R = 10ms, T E = 4.9ms, flip angle = 20◦, acquired voxel size 2.7 x 3.6 x 8.0mm3,
reconstructed voxel size 2.22 x 2.22 x 4.0mm3, TFE factor 26, EPI factor 13, TFE acquisition
time 267.9ms.

• High resolution 3-D: 3-D balanced TFE, cardiac gated at late diastole, respiratory gated at
end-exhale, 5mm navigator window, typically 120 sagittal slices, T R = 4.4ms, T E = 2.2ms, flip
angle= 90◦, acquired voxel size 2.19 x 2.19 x 2.74mm3, reconstructed voxel size 1.37 x 1.37 x
1.37mm3, the acquisition window was optimised for each volunteer and was on average 100ms,
scan time approximately 5 minutes.

The dynamic calibration scan was ECG-triggered and gated, so one volume was acquired
for each heart beat. The images therefore represented the motion of the heart due to respi-
ration only. The scan acquired 40 images while the volunteer was breathing normally. The
superior-inferior (SI) displacement of the left hemi-diaphragm was employed as the respi-
ratory surrogate. The high resolution MRI image is a standard pre-procedure acquisition in
many clinical protocols and provides high spatial resolution information about the anatomy
and pathology of the heart.

2.2 Methods
Anatomical atlas. To eliminate anatomical variation from the comparison of the different
motions, an average shape atlas in its natural coordinate system was formed, using the ap-
proach described in [3]. To remove positional differences from the registrations, the high
resolution images were first translated so that the centres of mass of the heart of each sub-
ject were aligned. The centres of mass were computed over a manually positioned binary
mask covering the main cardiac chambers and vessels. The same mask was then employed
for motion estimation and evaluation purposes. Given the population high resolution im-
ages In,n = 1, . . . ,N, one image was randomly selected as a starting reference Ire f and all
remaining images were non-rigidly registered to it [1]. An average intensity image Iavg0 was
computed using all N warped images. Iavg0 was then employed as the new reference and
In,n = 1, . . . ,N were non-rigidly registered to it. By averaging the intensities of the new set
of warped images, Iavg1 was obtained and used as the new reference image. The registration
and averaging processes were repeated until the similarity measure between Iavgt and Iavgt−1
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was higher than a predefined threshold. We used Normalised Cross-Correlation (NCC) as
a similarity measure and 0.99 as the threshold. To remove any remaining bias towards Ire f ,
Iavgt was non-rigidly registered to In,n = 1, . . . ,N and then warped using the mean values
of the N resulting deformation fields. In this way, Iavgt is warped to its natural coordinate
system [3], which requires the minimal non-rigid deformation to explain the anatomical inter-
subject variability. Iatlas is the final average intensity image in its natural coordinate system.
Cross-population model formation. Denoting by Dnp the dynamic calibration image p of
subject n, the dynamic image of subject n having the highest surrogate value was selected as
the reference end-exhale image Dnre f . As described in [4], the images Dnp were registered
to Dnre f using an affine registration algorithm and a set of P affine transformations Anp was
obtained for each subject n. To localise the registration to the heart only, the dynamic images
were masked using the binary mask used for the atlas building. To compare the motions of
the different subjects, the transformations Anp were all transformed to the coordinate system
of Iatlas as follows. We denote by Rn the non-rigid transformation that maps each high reso-
lution image In,n = 1, . . . ,N to Iatlas. The transformation Ratlasnp

= Rn ◦Anp ◦R−1
n describes

the respiratory state p of subject n in the atlas natural coordinate system [2, 5]. Since Ratlasnp
results in a non-rigid transformation, but an affine transformation is considered sufficient to
model cardiac respiratory motion [4], a point-based minimisation algorithm was employed
to linearise Ratlasnp

, resulting in N ×P affine transformations R̂atlasnp
. These, together with

the corresponding surrogate data for each subject, form the motion atlas.
Motion clustering. This paragraph details the clustering of the N subjects’ respiratory mo-
tions based on their similarity, as shown in Figure 1(b). In order to compare the N motions,
the respiratory surrogates were normalised, so that their ranges were [-1,0] for any subject n.
Subject-specific affine motion models of the transformations R̂atlasnp

were then built as de-
scribed in [4]. To quantify motion similarities, 10 evenly distributed surrogate values in [-1,0]
were used to compute 10 motion model estimates for each subject n. Target Registration Er-
rors (TRE) between each pair of motion models were computed over the 10 motion estimates
using all voxels in the binary mask covering the heart of the atlas as target points. These TRE
values were used to cluster the subjects into groups with similar motions as follows. Using
the 95th quantile of the pair-wise TREs, a N ×N adjacency matrix W was built, where the
entries wi, j represent the TRE between subject i and j, indicating the degree of similarity in
their average respiratory motions. By employing a spectral clustering technique [7], the N
respiratory motions were grouped into clusters. The number of clusters was chosen to be the
maximum number of clusters for which all clusters contained at least 2 subjects.
Personalisation. In principle, a wide range of image-based and non-image-based data could
be used for the personalisation of the cross-population model. However, in this preliminary
work we used only image-based features, namely the affine parameters that relate the new
subject’s high resolution image to the atlas average image Iatlas. To compute the anatomical
feature vector for each subject, the non-rigid anatomical registrations Rn were linearised,
again using a point-based minimisation algorithm, to obtain affine anatomical transforma-
tions R̂n. The non-translational components of R̂n were considered only (3 rotations, 3
scalings and 3 shear angles), describing the different shapes and poses of the hearts. The
feature vectors were formed from the coefficients of the affine matrix representing this trans-
formation normalised by their standard deviation. A supervised random forest classifier was
trained providing the clusters C as outputs and the anatomical feature vectors as predictors.
Once the classifier was trained, the anatomical feature vector R̂unseen for a new unseen sub-
ject was classified into one of the clusters Ck. The P respiratory affine transformations Anp of
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the K datasets in the cluster Ck were warped to the coordinate system of the new unseen sub-
ject using the non-rigid transformation R−1

unseen. The personalised cross-population motion
model was then built as described in [4]. The final motion estimates were obtained using the
personalised model and the surrogate data of the new unseen subject.

2.3 Evaluation
For evaluation, a leave-one-out cross-validation was employed: each of the 23 subjects was
left out in turn and the remaining 22 datasets were used to construct the cross-population
model. An anatomical feature vector derived from the left-out subject’s high resolution im-
age was used to personalise the cross-population model. For a thorough accuracy evaluation,
we non-rigidly registered the dynamic images DLOp of the left-out dataset to the dynamic
end-exhale reference image DLOre f [1]. This process resulted in P gold-standard non-rigid
motion fields which were employed to evaluate the accuracy of the personalised motion
model. The TRE between the affine motion fields estimated by the motion models and the
non-rigid motion fields was computed over the binary mask covering the heart (see Sec 2.2).

We compared our personalised model with a standard cross-population model [2, 5, 8],
where all 22 datasets were used in the computation of the motion model for the left-out
subject, and to a subject-specific motion model. To build all models, we warped DLOre f

using the gold-standard non-rigid motion fields, obtaining a set of artificial images with
known, realistic motion fields. Affine registration and model building [4] was applied to the
artificial images. For completeness sake, the TRE of no respiratory motion estimate is also
computed. Results are provided in Section 3 .

3 Results
Results of the leave-one-out cross-validation are shown in Figure 2. The median and 95th

quantile of the TREs were computed for each left out subject for each technique compared.
For compactness sake, the mean and standard deviation are computed over all 23 subjects,
both for median and 95th quantile. Our method is more accurate than a standard cross-
population model proposed to date, with motion estimates closer to the subject-specific es-
timates. The last row of the table in Figure 2 shows an average improvement of 20% for
medians and 17% for 95th quantiles of TREs achieved by our method compared to an aver-
age cross-population model. The highest improvements of the 95th quantile were achieved
for subject 9 and 1 (58% and 52% respectively).
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No estimate 3.5/2.3 11.6/4.5

Average pop model 2.0/1.2 5.8/2.5
Proposed pop model 1.6/0.8 4.8/1.8
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Improvement (%) 20.0/33.3 17.2/28 .0

Figure 2: Results of the leave-one-out cross-validation. On the left, 95th quantiles of TRE
for each subject are shown. On the right, the table reports mean/std deviation of median and
95th quantile TRE values for the methods compared over all subjects.
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4 Discussion and Conclusions
We have proposed a novel personalisation method for cross-population respiratory motion
models. Our method exploits inter-subject motion variability by investigating the relation-
ship between the anatomy and its respiratory motion. We have presented results for cardiac
respiratory motion derived from MRI. Results showed the proposed model to be more ac-
curate than a standard cross-population model, with accuracy for some subjects comparable
to subject-specific motion models, but without the need for a dynamic calibration scan. The
proposed personalisation is particularly effective for those subjects with a respiratory motion
that differs significantly from the average cross-population motion.

Healthy volunteer datasets were considered in this work. Future work will investigate
the application of the technique to clinical data. For patients, a richer source of predictors
may be necessary to describe anatomical changes of the heart due to pathology, and we plan
to investigate the use of non-imaging data from the patient record for this purpose.

In this work we modelled and compared normal respiratory motion. Future investigation
might extend the method to different breathing patterns, as can often be the case during
acquisitions/interventions, and different clustering and classification techniques. Moreover,
different modalities such as CT or 3-D echocardiography could be employed to build and
personalise the proposed cross-population model.
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Abstract 

Optical Coherence Tomography (OCT) images have the potential to provide 

quantitative measurements of the entire anterior segment of the eye.  A new three-

dimensional (3D) segmentation framework founded on level set based shape prior 

segmentation model has been developed for automatic segmentation of the entire 

cornea in 3D anterior segment OCT (AS-OCT). A three step algorithm was 

developed.  The first step was to pre-process the image to reduce noise.  The next 

step was to obtain a coarse segmentation of the front eye by using an entropy filter 

and the Otsu’s thresholding technique.  The final step used the new level set based 

shape prior segmentation model under cylindrical coordinates to evolve the contour 

initialised from the coarse segmentation and achieve the final segmentation.  Initial 

results on synthetic image and real 3D AS-OCT images show promising results.  

1. Introduction 

Optical Coherence Tomography (OCT) is a non-invasive imaging technique.  It has been 

used extensively on the retina at the back of the eye.  The optically transparent nature of 

the human eye makes OCT a well suited imaging technique for retinal imaging [1].  There 

has been an increasing use of OCT to measure the geometry of the human cornea in vivo 

as well as anterior chamber biometry [2]. 

Anterior segment OCT (AS-OCT) is able to generate high speed and high resolution 

images of the front of the eye.  It has widespread medical applications from contact lens 

fitting, modelling laser eye surgery to monitoring patients with eye pathologies [3].  In 

particular, obtaining accurate topography information of the anterior segment using this 

technique would also allow construction of patient-specific models for biomechanical 

modelling of the human eye [4].  There is currently a lack of automated measurement tools 

supplied with commercial OCT devices, and manual measurement is time consuming, 

tedious and subject to human errors. For this reason, there is an increasing need for fully 

automated segmentation techniques to accurately identify and trace both anterior and 

posterior boundaries of the anterior segment. 
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    There have been several studies where segmentation of two-dimensional (2D) anterior 

segment OCT images has been explored [5, 6].  Williams et al have previously developed a 

2D segmentation system for the anterior segment using a level set technique.  Figure 1 

shows an example 2D image segmented using their technique.  In order to create a model 

of the entire cornea a three-dimensional (3D) segmentation technique is required.  To the 

best of our knowledge, there is no approach that is able to segment the entire cornea in 3D 

anterior segment OCT images.  

 
Figure 1: Example segmentation of 2D OCT image of cornea.  Red line is CVWS, green line is 

CVWSe and blue line manual annotation.  Colours are altered where lines overlap. 

This study aims to develop a new segmentation framework that can automatically 

segment the cornea in 3D AS-OCT images. Due to the symmetric structure of the cornea, a 

series of cross-sectional images of the cornea all across the centre of the cornea but rotated 

relative to each other are taken to represent the cornea. Figure 2(a) demonstrates the 

scanning pattern and (b) illustrates the scan in the horizontal direction. For this specific 

problem it is envisaged that a new model using cylindrical polar coordinates will be more 

useful than conventional ones using Cartesian coordinates.  Level set models can be 

extended to 3D without changing the energy function fundamentally.  Previous work on 

3D segmentation has mainly focused on models using Cartesian coordinates (ie a series of 

parallel scans of a subject being used to create a 3D image) [7].  One of the challenges in 

this work is the extension of previous 2D segmentation techniques to 3D using cylindrical 

polar coordinates and 3D shape prior. 

This study aims to demonstrate the usability of level set using cylindrical coordinates 

for real applications represented by 3D cornea segmentation. The remainder of the paper is 

organised as follows.  Section 2 describes the new segmentation framework in detail.  

Section 3 describes the experiments and presents the segmentation results. Section 4 

discusses the results and concludes the paper. 

  

(a)      (b) 

Figure 2:  Illustration of the 3D AS-OCT scanning pattern. (a) Diagram showing layout of radial scans.  

The black circle represents the cornea and each red line is a B scan of the cornea.  Note only 16 

scans are shown here for clarity. (b) An example scan in the horizontal direction. For the purpose of 

demonstration, the brightness and contrast has been adjusted. 
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2. Methods 

2.1 3D AS-OCT 

3D AS-OCT images using a customised AS-OCT device are used in this study. A typical 

3D image dataset comprises 32 radial scans centred at the cornea with an angle of 11.25 

degrees between. Each image section comprises 2048*2048 pixels corresponding to 12.05 

mm and 7.71 mm in the horizontal and vertical direction respectively. Figure 2 shows the 

scanning pattern and a typical scan in the horizontal direction.  

2.2 Segmentation Framework 

A three step segmentation framework was developed.  The first step was to pre-process the 

image to reduce noise.  This involved using a combination of Gaussian filters and 

morphological processing to smooth noise from the image.  A more advanced noise 

reduction method could have been used; however noise reduction was not the main focus 

or limiting factor in our segmentation technique. The next step was to obtain a coarse 

segmentation of the front eye by using entropy filter followed by the Otsu’s thresholding 

technique.  The final step used the new level set based shape prior segmentation model to 

evolve the contour initialised from the coarse segmentation and achieve the final 

segmentation. 

2.2.1 Pre-processing step 

The initial pre-processing step was to apply a Gaussian filter to the image.  This acts to 

reduce the noise in the image, other filters could have been used such as median filter more 

suited to removing speckle noise.  However the removal of noise was not the primary 

focus of this study and noise is not the limiting factor in improving results.  Morphological 

processing was then used to remove some of the unwanted structures in the image.  There 

was a tendency for bright horizontal bands to form above the cornea in the image, as can 

be seen in figure 2b.  These were removed by morphological closing operation.  Linear 

structural elements were used in this process. 

2.2.2 Coarse Segmentation 

The aim of this step is to produce an initial estimate of the corneal location (or coarse 

segmentation). This estimate is important as it will be used as the initial location of the 

curve to be evolved by the level set function in the following step, and also its anterior 

boundary will be used to construct the shape constraint in the later stage. Given the 

relatively good performance the technique described in [5] was adopted for this purpose.  

More specifically, an entropy filter was applied to the pre-processed image to produce an 

entropy map. The coarse segmentation is achieved by segmenting the entropy map using 

Otsu’s thresholding method.  This was applied image by image and the initial shape was 

assumed to be perfectly cylindrically symmetric.   

2.2.3 Segmentation with Level Set and Shape Prior 

A general segmentation model using level set and shape prior can be described as the 

following energy minimisation problem 

                                   
 

 

                                  
            

        
 

  
            

           
 

  

(1)  
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where      is the level set function,      and      are the delta function and Heaviside 

function respectively,      the image intensity,    and    the mean intensities inside and 

outside the zero level contour, and    the entire image volume.   s are the weighting 

parameters for different terms.  In particular   
  and   

 can be used to apply different 

weights to the two region terms.       is a level set function corresponding to the shape 

prior. The first three terms in Eq (1) stands for the standard Chan and Vese’s model [8]. 

The fourth term is a shape term that keeps      close to the shape prior     , the 

formulation of      will be detailed later. The last term is a regularisation form introduced 

by Li et al [9] to keep      as a valid level set function without need of computationally 

expensive re-initialisation.  The effect of this term is to penalise the formation of any 

regions with either very steep gradient or any flat areas. 

    The solution to Eq (1) can be derived by gradient descent approach as follows  
  

  
          

  

     
         

               
    

           
 

                       
       

  

     
     

(2)  

The energy function was minimised by alternatively minimising  ,    and   . When    is 

fixed, the terms    and    using the following expressions 

    
           
 

   

       
 

   
 (3)  

    
              
 

    

          
 

    
 

(4)  

    In the iterations, the shape prior S(x) was also updated. An ellipsoid was estimated by 

least square fitting of the top surface of the level set function.  A second related ellipsoid 

was built at a fixed distance below the first one.  The shape prior of the cornea S(x) was 

then computed as the product of the level set functions corresponding to those two 

ellipsoids.   

                          (5)  
where           is a signed distance function corresponding to ellipsoid fitted to top 

surface and           corresponds to a related ellipsoid which has been shifted down to 

mimic the lower surface of the cornea. Taking the product ensures a sign difference 

between the volume between the ellipsoids and outside the ellipsoids.  This was performed 

once every 100 iterations in order to speed up the program. 

    In the discretisation the main difference between cylindrical and Cartesian coordinate is 

the curvature term: the former one is more complex.  More specifically, the curvature 

under cylindrically polar coordinate becomes 
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    where  ,   and   are cylindrical coordinates. This was implemented using central 

difference approximations for the partial differentials in 3D.   

    The level set function      was updated until either the update had only a very small 

effect on the position of contour or 2,000 iterations were reached. 

3. Results 
The new segmentation framework was tested on a synthetic image and a real 3D AS-OCT 

image. During the tests the constants determining the strength of different components of 

energy were empirically chosen for the best results.  The values for the different constants 

used are       ,   
    

   ,        and       . 

    A synthetic volume data was built using two ellipsoids with different radii to model the 

cornea.  In each section some regions were deleted deliberately to simulate the OCT data 

where some regions are missing due to poor signal to noise ratio.  Speckle noise was also 

added to these images since speckle noise is present in OCT data.  Figure 3(a) shows the 

synthetic data in montage form of all 32 sections.  Figure 3(b) shows the segmentation 

results.  It can be seen that the new segmentation framework is capable of recovering the 

artificial gaps we have put in our ‘cornea’ to model areas of lower signal found in real data. 

    The program was also tested on a single 3D OCT image of the human cornea, see Figure 

4(a).  The image was taken from a healthy normal eye using a customised spectral domain 

OCT machine. There are 32 cross-sectional scans of the cornea were taken with the scan 

being rotated 11.25 degrees between each image. Figure 4(b) shows the segmentation 

result on Figure 4(a).  It can be seen from this that our program can satisfactorily segment 

the cornea. 

 

  

(a)     (b) 

Figure 3: A synthetic image and its segmentation result. (a) Synthetic data with 32 images arranged 

in a radial pattern; (b) Segmentation result of the image in (a). 

  

Figure 4: Illustration of segmentation of a 3D AS-OCT image. (a) A 3D OCT image of the human 

cornea where 32 images shown here are arranged in a radial pattern to give the 3D image of the 

cornea; (b) Segmented cornea in the image (a). 
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4. Conclusion 

    A fully automatic 3D segmentation framework using level set model with shape prior 

has been developed. It is capable of segmenting 3D images of the cornea using 

cylindrically polar coordinates.  The usability of this model was assessed using synthetic 

data and real 3D AS-OCT images. Our preliminary results showed that the framework can 

achieve satisfactory results even though some regions in the image has very low signal to 

noise ratio for which conventional segmentation without shape prior is unlikely to succeed. 

To the best of our knowledge this is the first paper presenting results on 3D segmentation 

of the cornea in 3D AS-OCT images.  

    Future work is to optimise the framework for speed by improving the computational 

efficiency. This could be achieved by implementing it using graph cut technique.  

Moreover, further validation will also be performed against manual segmentation on a 

large dataset of OCT images.  It is hoped that the results of this segmentation will 

eventually be used as an input in patient specific biomechanical modelling of the human 

eye. 
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Abstract

In this paper we proposed a decomposition based approach, coupled with local fea-
ture extraction, to support the analysis of Three-Dimensional (3D) Optical Coherence
Tomography (OCT) images so as to determine the presence (or otherwise) of Age-related
Macular Degeneration (AMD) in the retina of the human eye. AMD is one of the leading
causes of vision loss in people aged over 50 years in the world. The 3D OCT imaging
technique has become an indispensable diagnostic tool for the management of AMD.
However, there is a lack of automated decision-making tools for analysing the large
volumes of data that can be collected using OCT. In order to address this problem, a
volumetric analysis technique is proposed for the automated diagnosis of AMD in 3D
OCT images without the need for detecting AMD lesions. The process commences with
the decomposition of a given image into sub-regions by recursively dividing a volume
into sub-volumes. Then, for each sub-volume, oriented gradient local binary pattern
histograms are extracted and formed into a feature vector to which classifier genera-
tion techniques can be applied. The proposed technique was evaluated using ten-fold
cross validation by applying it to 140 volumetric OCT images, the results demonstrated
a promising performance with a best Area Under the receiver operating Curve (AUC)
value of 94.4%.

1 Introduction
One of the most currently advanced Three-Dimensional (3D) imaging techniques is Opti-
cal Coherence Tomography (OCT) invented by Huang et al. [4]. OCT makes use of low-
coherence light and ultrashort laser pulses in order to detect the spatial position of tissue and
resolve depth information. The use of light waves enables acquisition of images (volumes)
with very high resolution that can reveal precise details of internal structures. 3D cross-
sectional volumes are generated from a series of 2D “slices” often referred to as B-scans.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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In the past decade, OCT has found success in the diagnosis of various eye diseases one of
which is Age-related Macular Degeneration (AMD).

AMD is a macular disease that can result in severe vision loss in people aged 50 years
or over. This disease damages the retina causing retinal pigment epithelium atrophy, detach-
ment and other abnormalities such as drusen and fluid inside the retina [5]. So far OCT is the
only imaging technique that can show the cross-sectional details of the retina and choroid,
where most of the AMD indicators can be clearly seen. AMD is typically identified in reti-
nal OCT images by visual inspection. A normal retinal volume has smooth and connective
tissue layers while an AMD retinal volume has disrupted layers and other abnormal patterns.
Figure 1(a) shows a 3D OCT normal retinal image; the retina has a smooth contour and a
regular arrangement of individual retinal layers. Figure 1(b) shows a 3D OCT retinal image
with AMD showing the abnormal change in the retina associated with AMD where fluid and
detachment of the retina causes the layers of the retina to separate from one another.

	
  

(a) A 3D OCT for a normal eye

	
  

(b) A 3D OCT for an AMD eye

Figure 1: Examples of two 3D OCT images showing the difference between a “normal” and
an AMD retina.

With the widespread use of 3D OCT techniques, various challenges and advantages have
been identified. Many clinicians nowadays are overwhelmed by the large number of patients
and the amount of image data collected for each of them. They are limited by time and
resources. There is also a lack of automated analysis tools and most of the existing tools
used for thickness measurement other image processing analysis. In practice, subjective
assessment is the mainstay. Usually clinicians will simply “skim” through all the image
data associated with a patient so as to arrive at a decision. Although the clinicians do an
outstanding job the process is subject to human error and skill. Therefore automated analysis
tools, such as that proposed in this paper, are desirable; not only to provide for better patient
management but also to provide for training.

We propose a method for automatically identifying AMD in 3D OCT images of the form
shown in Figure 1. The novel element of the proposed method, in the context of image vol-
umes, is that it combines oriented gradient and Local Binary Pattern (LBP) histograms with
a decomposition based method in order to generate an effective volumetric representation.
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The remainder of this paper is divided into four sections. In section 2, some previous
work related to the classification of OCT data and other feature extraction methods is pre-
sented. The proposed approach is then described in section 3. In section 4 we assess the
proposed method by reporting some evaluation results conducted using ten-fold cross val-
idation. In the final section, Section 5, the implication of using the proposed method is
discussed and some conclusions drawn.

2 Related Work

Work on 3D volumes has been mostly directed at statistical feature extraction and repre-
sentation. Examples include: (i) Local Phase Quantization (LPQ) and (ii) the Local Binary
Patterns (LBP). LPQ relies on the local Fourier transform (at low frequency) where by a his-
togram of the quantised Fourier transform is computed [8]. LBPs compute the relationship
between a pixel and its immediate neighbours. With respect to 3D, however, the generation
of 3D rotation invariant LBPs are computationally expensive. Zhao and Pietikainen [9] pro-
posed the use of Three Orthogonal Planes LBPs (LBP-TOP). The LBP-TOP representation
considers the calculation of LBPs only with respect to neighbouring voxels located in the
XY , XZ and Y Z planes.

There have been a number of reported studies with respect to macular disease diagnosis
using OCT images, but mainly focused on 2D OCT image analysis. For example a study
conducted by Liu et al. [6] implemented a classifier for identifying retina diseases, including
AMD, using 2D retinal OCT image slices. The classifier generation process comprised three
steps. The first step consisted of image processing and alignment. A threshold and median
filter was applied in order to remove noise. Following this, a morphological operator was
used to remove unwanted objects. A least square filter was then used to both extract the
retina region while at the same time “flattening” it. In the second stage, the pre-processed
image was represented using a “Multi-Scale Spatial Pyramid” (MSSP) with different levels.
Each level in the MSSP comprised a local description in terms of a histogram of the LBPs.
Dimensionality was reduced by the means of Principal Component Analysis (PCA). All the
LBPs were then combined to form a global feature descriptor. Finally, the Radial Basis
Function (RBF) kernel based Support Vector Machine (SVM) classifier was then applied to
the global descriptor to obtain a retinal disease categorisation.

3 Proposed Approach

The proposed method comprises two steps. First, due to the nature of the image acquisition,
images of different eyes usually have different orientation and some inherent “speckle” noise.
In order to improve the image quality, pre-processing of the retinal volumes is performed to
extract a Volume Of Interest (VOI) encompassing the retina and then to flatten the retina
(warping). Secondly a features extraction method is applied to the pre-processed volume so
as to identify a set of local histogram based feature vectors. The generated feature vectors
are then used to train a classifier (a Bayesian network classifier was used with respect to this
paper). Each step is considered in further detail in the following two sub-sections.
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3.1 Volume Pre-processing
During the OCT scanning of the retina, there are some practical issues that affect image
quality. One issue is noise due to fluid in the retina and/or the limitations of OCT scanning.
Another issue is that volumetric retinal images are typically not referenced to the same hori-
zontal plane due to the curved shape of the retina and variability across populations. In this
case, the retinal image must be flattened before any further processing can take place.

Thus two important tasks are: (i) identification and extraction of a Volume Of Interest
(VOI) which also results in noise removal, and (ii) flattening of the retina as appropriate.
A hybrid approach is proposed that combines the use of the Split Bregman Isotropic Total
Variation algorithm [2] with a least-squares approach [6]. The Split Bergman method is
applied to every slice of the 3D volume to extract the VOI, the retina, in such away that noise
is also removed. Then the image is flattened using a second order polynomial least-square
curve fitting according to the nature of the mean surface of the retina (defined according to
the top and bottom retina surfaces). In order to do this we select the slice where the top
and bottom surfaces of the volume (retina) are furthest apart and consider these two layers
in terms of two vectors made up of voxel values. These two vectors are used to define the
“middle” vector which is then used as a reference for flattening the entire retinal volume.
Figure 2 shows a set of 2D slices of a retinal image before and after pre-processing.

	
  

(a)
	
  

(b)

Figure 2: Illustration of the pre-processing: (a) the original image, and (b) after pre-
processing

3.2 Local Feature Extraction and Classification
In order to extract the desired local features, we applied two steps. First, given a pre-
processed volume, we decomposed the volume into a set of sub-volumes (32 in total). For
every sub-volume, the LBP-TOPs were computed [9]. Recall (Section 2) that the LBP-TOP
representation considers LBP codes in terms of three planes namely XY , XZ and Y Z. The
LBP histograms of the three planes ( XY , XZ and Y Z planes) were concatenated. Both
a “normal” LBP histograms and a Histogram of Oriented Gradients (HOG) for LBP-TOP
codes were generated with respect each plane and each sub-volume (thus six histograms per
sub-volume, 192 histogram bins in total). In order to form a HOG [1, 7] from the three LBP-
TOP representations (XY , XZ and Y Z ), the image gradients ∇x, ∇y, ∇z were first computed
using a convolution filter with a vector v= [−1,0,1]. Then the inverse tangent was computed
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Method Precision F-score Acc. Sensit. Specif. AUC
1. MSSP based 81.9 85.9 85.7 82.4 89.4 90.4
2. LBP-TOP based 88.2 87.6 87.8 87.0 88.7 91.0
3. LPQ based 80.9 83.3 84.3 87.0 88.7 88.0
4. proposed method 91.5 91.4 91.4 92.4 90.5 94.4

Table 1: Comparison of proposed method with methods based on MSSP, LBP-TOP, LPPQ
(best results highlighted in bold font).

first between the ∇x and ∇y gradients forming angle1, and then between the result and the ∇z
forming angle2: angle1 = atan2(∇x,∇y) and angle2 = atan2(angles1,∇z). The magnitude
of each sub-volume’s gradients is then calculated using magnitude =

√
(∇x2 +∇y2 +∇z2).

The HOGs were generated by considering each set of angles (in each plane and each sub-
volume) and their accumulated magnitudes. The HOG were set to be 27*B bins (range of
27 (3*3*3) degrees per bin) where the angle within the range of π + 2/B to 2× π/B : pi
were considered (B=9). If the angle is within the range of the angle, then the magnitude
was accumulated for the histogram bin. Then the complete set of histograms are normalised.
Each histogram is conceptualised as a vector. The final image description will then be for-
mulated by appending these vectors to one another to create a single feature vector (one per
image). To reduce the number of elements in this eventual feature vector Principal Com-
ponent Analysis (PCA) was applied so that a summarising total feature vector was derived.
Each resulting feature vector was combined with a class label indicating the disease status
of the associated retinal volume as informed by medical retina experts. A Bayesian network
classifier was then used to categorise the feature vectors [3]. The results will be presented in
the next section.

4 Evaluation
To evaluate the effectiveness of the proposed approach experiments were conducted using
140 3D OCT volumes, 68 “normal” and the remainder AMD. The size of each volume was
about (1024×496 pixels) × 19 slices describing a 6×6×2 mm retinal volume. Ten-fold
cross validation was used to evaluate the proposed method. Six parameters were used to
measure the performance of the proposed algorithm: precision, f-score, accuracy, sensitivity,
specificity and AUC.

A comparison between the proposed method and a number of existing methods was
conducted. Table 1 compares the results obtained with the 2D MSSP method [6] and two 3D
representation methods: LBP-TOP [9] and LPQ [8]. Bayesian classifier generation was used
in all cases. From the table it can be seen that the proposed method outperformed the other
methods. The MSSP method [6] generated an AUC of 90.4 while the AUC for the proposed
method is 94.4. With respect to the other 3D based method, the AUC of LBP-TOP is 91.0
while LPQ is 88.0.

5 Discussion and Conclusion
The aim of the study presented in this paper was to build a diagnostic system that can be
applied to 3D OCT retinal volumes so as to perform a binary classification of these vol-
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umes in terms of AMD (AMD vs. non-AMD). To address this problem a new method was
proposed that combines the concept of volume decomposition and LBPs. The results ob-
tained using the proposed technique demonstrated a good performance in comparison with
other 3D (LBP-TOP, LPPQ) methods and a 2D based method (MSSP). The most significant
findings to emerge from the work is that the combination of image decomposition and LBP
histograms helps to form an accurate feature descriptor for classification purposes. A num-
ber of possible future studies using the same experimental set up are envisaged. It would be
interesting to assess the effects of applying frequency decomposition based methods, such as
curvelets, for extracting salient features describing sub-regions. It would also be interesting
to take into consideration other ways of representing images, such as intensity frequency
time series. Alternatively, hybrid representations may be considered so as to, for example,
better understand the relationships between intensity frequencies and spatial information.
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Abstract

Optical Projection Tomography imaging has potential to enhance diagnostic analysis
of colorectal polyps. In this paper, the problem of feature extraction for automated clas-
sification of optical projection tomography images of colorectal polyp is addressed. 3D
patches are classified using the bag of visual words framework and support vector ma-
chines. We compare the utility of dimensionality reduction by random projections with
two prominent techniques for 3D texture analysis: independent subspace analysis and
volumetric local binary patterns. By analysing classification performance on a dataset
of 59 colorectal polyp images containing annotated regions of low-grade dysplasia and
invasive cancer we show that features based on random projection produce the best result
(area under ROC curve: 0.87) with lower computational cost than the other methods.

1 Introduction
Colorectal cancer screening has reduced mortality and detected large numbers of adenomas
and polypoid cancers. However, diagnosis using conventional 2D histopathology exhibits
marked inter-observer variation [12]. Recently, optical projection tomography (OPT) has
been used to image colorectal polyps in 3D [8]. This paper investigates automated classi-
fication of 3D patches in such images. Specifically, we focus on discriminating between
low-grade dysplasia and invasive cancer. Figure 1 shows example OPT polyp images with
regions annotated by a histopathologist. Regions of invasive cancer tend to have a more
dense and homogeneous texture than low-grade dysplasia.

We investigate the use of random projections in order to obtain feature vectors of re-
duced dimensionality [9]. This is compared with three alternative methods for feature ex-
traction: 3D local binary pattern descriptors [10, 11, 15] and two forms of independent
subspace analysis (ISA). ISA has previously been used for classification of H&E stained
histology images [7]. These methods represent contrasting approaches to low-level feature

c© 2013. The copyright of this document resides with its authors.
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(a) (b)

(c) (d) (e)

Figure 1: OPT virtual sections showing regions of (a) invasive cancer and (b) low-grade
dysplasia. (c) Volume rendering of a polyp. (d) Annotated region of polyp in (c). (e)
Combined volume rendering of the polyp and its annotation.

extraction, i.e., hand-crafted features (LBP) and learned domain-specific features (ISA). The
popular bag of visual words framework [14] was used; each 3D image patch was represented
by extracting local feature vectors from multiple 3D windows within the patch, quantising
these feature vectors using a learned visual word dictionary, and histogramming these visual
words. In the case of feature vectors obtained by random projection, we explore the effect of
varying their dimensionality as well as of varying the size of the dictionary.

2 Random Projection
The intensity values of the voxels in an n×n×n-voxel subvolume (3D window) can be con-
sidered directly to be elements in a vector of dimensionality N (N = n3). Random projection
(RP) can provide a simple yet surprisingly effective method to reduce the dimensionality
of such ‘raw’ features [2]. Liu and Fieguth [9] performed texture classification using such
a method. Let X be an N×T data matrix in which the T columns are the N-dimensional
window vectors. The RP method simply maps these vectors onto a D-dimensional subspace
using a suitably generated D×N random projection matrix R:

X̂D×T = RD×NXN×T (1)
Each element in the projection matrix is a sample from a Gaussian distribution with zero
mean and unit variance. According to the Johnson-Lindenstrauss lemma and the proofs
in [1], the T data points in RN are embedded into a lower dimensional Euclidean space
RD such that the relative distances between any two of these points are approximately pre-
served. The complexity of this process is only O(DNT ). In Liu and Fieguth’s 2D image
patch classification experiments they compared random features (X̂D×T ) with the use of raw
patches (XN×T ), and some hand-crafted feature extractors (LBP and filter banks with 38
filters). Surprisingly, the result based on random features with a simple nearest neighbor
classifier matched or even surpassed the state-of-the-art methods on three commonly used
texture datasets. Moreover, they observed that approximately one-third of the dimensionality
of the original patch space was needed to preserve the salient information contained in the
original local patch; any further increase in the number of features yielded only marginal
improvements in classification performance. Random projection of texture features has been
used previously in the context of tumor segmentation in 2D histopathology images [5].
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3 3D Local Binary Patterns
Local binary patterns (LBPs) are popular, computationally simple texture decriptors that
exhibit robustness to monotonic changes in intensity. They are computed by thresholding
each 3× 3-pixel neighbourhood at the value of its central pixel, considering the result as
an 8-bit binary code, and histogramming these codes over a 2D image window. Ojala et
al. [11] found that the vast majority of the binary codes in a local neighborhood are so
called “uniform patterns”. To achieve rotation-invariance (around the central pixel) using
uniform patterns, all non-uniform LBP patterns are stored in a single bin in the histogram
computation. In a 3D volumetric image, LBP descriptors can be computed based on 3× 3
neighbourhoods in each of three orthogonal planes (taken to be aligned with the image axes
for convenience) [15].

4 Independent Subspace Analysis
Independent Subspace Analysis (ISA) is a generalized version of Independent Component
Analysis (ICA) in which components are divided into subspaces; subspaces are assumed
independent, whereas components in the same subspace need not be independent of each
other [4]. Features learned by ISA show phase- and translation-invariant properties. An
input image xt can be modelled as a linear combination of features:

xt = ∑
l

∑
m∈S(l)

At
msm (2)

where S(l) is the set of indices m of At
m that belong to the l-th subspace. We used a model

in which the non-linear filter At
m is represented by a two-level network with weights W and

V respectively [6]. The first level weights, W, represent filters within subspaces whereas the
second level weights, V, are fixed to represent the structure of subspaces. Features extracted
from this non-linear network can be expressed as:

sm(xt ;W,V) =

√
∑L

l=1 Vml(∑N
j=1 Wl jxt

j)
2 (3)

in which W is learned from a training set {x1,x2, . . . ,xT} by minimising ∑T
t=1 ∑M

m=1
sm(xt ;W,V) subject to WWT = I, where N, L and M are the input dimensionality, number
of linear components in each subspace and number of subspaces respectively. Some learned
filters are visualised in Figure 2. After training, local descriptors are extracted by applying
Eq.(3) to each 3D image window. For comparison, we also used convolutional ISA in which
ISA networks are stacked in a convolutional manner, following the implementation described
in [6].

(a) (b) (c) (d)
Figure 2: 173-voxel 3D filters, W, learned from 9,000 3D OPT image windows using ISA.

5 Experiments
Each 3D patch was represented by its bag-of-visual-words histogram. This histogram was
formed by binning the feature vectors extracted from each sub-window of a fixed size con-
tained within the patch. Histogram bins corresponded to the learned visual word dictionary.
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(a) (b) (c) (d)
Figure 3: 3D patches sampled from invasive cancer regions (a,b), and low-grade dysplasia
regions (c,d).

The window size used for feature extraction is an important parameter. Given a central pixel
located at (x,y,z) and window size n× n× n, the neighbouring pixels are defined within
the cubic region from (x− (n−1)/2,y− (n−1)/2,z− (n−1)/2) to (x+(n−1)/2,y+(n−
1)/2,z+(n−1)/2). Linear support vector machine (SVM) classifiers were trained on sets of
3D patches sampled from the annotated OPT image regions. Testing was always performed
on OPT images not used for training. Thus the experiments reported in this paper are tested
for inter-polyp generalisation.

Classification experiments were performed on a set of 59 volumetric OPT images from
59 patients. These images were acquired using ultraviolet light and Cy3 dye. Each image
was of one colorectal polyp specimen and had 1024×1024×1024 voxels with aspect ratio
of 1 : 1 : 1. In 30 images, 3D regions judged to consist entirely of low-grade dysplasia were
annotated by a trained pathologist. In the other 29 images, 3D regions judged to consist
entirely of invasive cancer (IC) were similarly annotated. The 3D regions were annotated
as 2D regions in sequences of 2D slices using ITK-SNAP [13]. A polyp typically extended
across 700∼ 800 slices of a volumetric image. The 2D regions were delineated every 4 or 5
slices and the region volume was interpolated in the intervening slices.

We randomly sampled 9,000 non-overlapping 3D image patches with size 21×21×21
strictly within the annotated regions for each image. Figure 3 shows some example patches.
In order to test the generalization capability of our approach across patients, we separated
the 3D patches sampled from different polyps during experiments. Samples from one polyp
were only presented in either training set or testing set. We used the Matlab interface of
L2-SVM[3] for the SVM classifiers.

In our experiments, four different feature extraction methods are tested: 1) ISA with Bag
of Words, denoted by ‘ISA+BoW’; 2) RP with Bag of Words, denoted by ‘RP+BoW’; 3)
VLBP with Bag of Words, denoted by ‘VLBP+BoW’ and 4) Convolutional ISA, denoted
by ‘ConvISA’. In the ConvISA method, the output of one ISA model serves as the input
basis of another ISA model. These two ISA models in ConvISA could be viewed as a local
feature extractor and a feature encoder respectively (in analogy to BoW). Therefore, we
do not specifically embed ConvISA in the Bag of Words framework. Instead, the output
features of ConvISA are directly input to the classifier. For the RP method we reduced
the dimensionality of raw patch features to 150 using random projection. In convolutional
ISA and ISA with Bag of Words methods, the dimensionality was reduced according the
same rule but using PCA (exactly following [6]). For all Bag of Words encoding processes,
visual word dictionaries were learned using K-means clustering with K fixed to 200 unless
otherwise stated. To form a fair comparison, the number of second level ISA features in
convolutional ISA was also set to 200, the same value as K.

6 Results
Patch-level classification. We obtained Receiver Operating Characteristic (ROC) curves
for each method by varying thresholds of the linear SVM output. Figure 4 shows ROC
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curves for each method at the respective optimal window sizes, n, chosen according to the
best parameters reported in [8]. The classification experiment was conducted in a 10-fold
validation setting similarly to [8]. That is, we randomly divided the dataset into 10 folds,
with about 6 images per fold. For each fold evaluation, we trained models with 9 folds and
tested on the remaining one. With non-overlapping random sampling, for each evaluation
routine the classifier was trained with about 8,100 3D patches and tested on 900 3D patches.
For the SVM classifier outputs we also report the value of Area Under ROC Curve (AUC)
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Figure 4: ROC curves given optimal window
size.

n Method AUC EER Time (s)

5 VLBP+BoW 0.87 0.20 407
9 ConvISA 0.78 0.27 788

17 ISA+BoW 0.85 0.23 472
9 RP+BoW 0.87 0.21 242

Table 1: AUC and EER given optimal win-
dow size.

and Equal Error Rate (EER) in Table 1. All feature extraction methods were implemented in
Matlab. The averaged computational time (in seconds) of feature extraction processes on a
2GHz Intel i7 CPU are listed in the last column of Table 1.
Random projection feature evaluation. The performance of classifier with RP+BoW
method was affected by two critical parameters: the number of visual words in the dic-
tionary (K) and the dimensionality of the random projection matrix (D). Given the optimal
window size of n = 9 for RP+BoW, the extent to which D and K affect OPT image patch
classification remained unclear. To test this effect, further experiments were conducted by
varying D and K. All the other parameters were set the same as in the previous RP+BoW
evaluation. The AUC values against D and K are reported in Figure 5. Note that D is shown
in a log scale in order to have a better illustration of the trend.
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Figure 5: AUCs depending on random feature dimensionality (D) and number of words (K).

7 Discussion and Conclusion
We compared four methods for discriminating between invasive cancer and low-grade dys-
plasia in OPT images of colorectal polyps. Figure 4 suggests that the simple RP+BoW
approach outperforms domain-specific feature learning method (ConvISA and ISA+BoW).
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In comparison with hand-crafted features (VLBP), random features showed similar perfor-
mance but with significant reduction in computational cost (Table 1). In Figure 5, classifica-
tion performance (AUC) is dominated by number of visual words (K) when K is relatively
small (K ≤ 50). The highest value of K tried (K = 200) gave the best AUC. The effect of
dimensionality (D) was apparent when K ≥ 100. Liu and Fieguth [9] found that approxi-
mately one-third the dimensionality of the original 2D patch space was needed to preserve
the salient information contained in the original local patch. Our experiments indicated that
with 3D OPT image patches, given enough words, there is no harm to further reduce the
dimensionality to 26

729 ≈ 1
10 the dimensionality of the original patch space.
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Abstract 

Despite current advances in endoscopic image acquisition, strong reliance is still 

placed on resecting and histologically examining colorectal polyps to assess their 

malignancy potential. In this study, we analyze the performance of a computer aided 

polyp classification system that uses features extracted from high magnification 

narrow band images to describe the density and irregularity of polyp pit patterns and 

separate polyps as either neoplastic or non-neoplastic. Our main features are based on 

the magnitude and angle of orientation dominance fields constructed with the use of a 

wavelet filter bank and a careful scale selection strategy. The features were tested 

using images from an OlympusTM Evis Exera endoscopic system and achieved a 

classification accuracy of 86.44% using a non-linear classifier with an n-fold cross 

validation strategy. The relatively high classification rate is a good starting point 

towards an automated optical biopsy system designed to decrease the miss rate of 

potentially malignant lesions. 

1 Introduction 

Colorectal cancer is the second most common cause of cancer related death in developed 

countries [1] with the majority of cases arising from adenomatous colorectal polyps. A 

polyp is defined as an abnormal growth of tissue on the surface mucosa of the colon. 

Polyps are not necessarily dysplastic or malignant and therefore not all give rise to cancer.  

Colorectal polyps, such as those found on the mucosal lining of the colon, are 

histologically classified as neoplastic or non-neoplastic. The majority of non-neoplastic 

polyps, such as hyperplastic, have little malignancy potential and in some clinical 

protocols are treated as benign. Adenomatous polyps, or adenomas, on the other hand can 

have a high degree of dysplasia (villous adenomas) and hence greater potential for 

malignant change. An example of an adenomatous and a hyperplastic polyp under narrow 

band imaging (NBI) are shown in Figures 1(a) and 1(b) respectively.  

The risk of cancer development can be reduced by up to 80% [2] by surgically 

removing or resecting the dysplastic polyp. The multiple classes and varied morphological 

appearance of polyps, however, make this task increasingly difficult. It is crucial to 

accurately discriminate between neoplastic and non-neoplastic lesions to avoid missing 

possibly malignant tumours and risking patient overtreatment. There are various methods 

of polyp detection and classification employed by clinical practice such as fecal occult 

blood tests (FOBT), sigmoidoscopy, colonoscopy and double-contrast barium enema.  
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Although studies to date have been inconclusive as to which is the best screening 

method [3] , it has been shown that colonoscopy can detect polyps that would otherwise be 

missed by sigmoindoscopy or FOBT [4]. In addition, chromoendoscopy, in the hands of an 

expert gastroenterologist, allows for precise optical diagnosis with accuracies ranging from 

85-96% [2] for two classes. This advantage is offset by the time, cost and associated 

learning curve to achieve expertise. This means inexperienced surgeons often run the risk 

of incurring large time and comfort penalties on patients by needlessly resecting all polyps 

they are unable to visually classify. 

Another limiting factor in polyp recognition is the inadequate pattern classification 

scales such as the Kudo’s pit pattern [5] or Vascular Colour Intensity (VCI) scale that, 

although widely accepted by the medical community, are by no means refined enough to 

be absolute. For example, polyps with a light VCI are classified by colonoscopists as non-

neoplastic but in practise 19% of adenomas have a light VCI [6]. The end result of this 

inadequacy to classify by optical means is that a large number of polyps are resected and 

sent for histopathology to decide their class. This introduces not only delays and added 

cost for the patient but also increased risk, as resecting a polyp can lead to perforation and 

blood loss in 0.1-0.2% of patients [7]. 

This highlights the need for an efficient, automated optical biopsy system to aid the in 

vivo classification of polyps with minimal invasive actions. By providing confidence on 

which are the neoplastic regions, it will also reduce the unnecessary resection of 

hyperplastic polyps for biopsy, cutting down further on cost and patient overtreatment. 

2 Materials and Methods 

2.1  Image Datasets 

Our study dataset comprises of 118 images (59 adenomatous and 59 hyperplastic) obtained 

from an Olympus
TM

 Evis Exera endoscopic system mainly used in the US and Japanese 

markets. This dataset, kindly provided by Douglas K. Rex (Indiana University School of 

Medicine, Indianapolis, USA) will be referred to as the 'Exera set'. All images are high 

magnification NBI images and are histopathologically cross checked to ensure they are 

correctly labelled. The polyp surface, used in feature generation and classification was 

manually segmented out of every image with the help of experienced endoscopists. 

     (a)    (b)         (c) 
 

Figure 1: (a) Example of an adenomatous polyp; (b) Example of a hyperplastic polyp; (c) 

visualisation of the local dominant orientation field (LDO) on part of polyp (b); the length 

of field lines corresponds to the LDO magnitude and their direction to the LDO orientation 
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2.2 Image Pre-processing 

Due to the reflective properties of the mucus present in the colon epithelium, a large 

number of specular reflections occur in the images. These could induce artifacts into 

spatial filter responses generated at a later stage so they had to be marked and removed. 

We identified specularities by constructing a bivariate Intensity-Saturation histogram 

for each image. Specular reflections correspond mainly to regions that have high intensity 

and low saturation [8] and hence by selecting that area of the 2D histogram we were able 

to isolate specular regions. 

2.3 Feature Construction 

The vascularity appears in NBI images as dark lines on the polyp surface making its 

texture locally oriented along one direction. In order to quantify the strength and the 

direction of this orientation, we construct a complex field of local dominant orientations 

(LDOs), using the wavelet filtering technique proposed by Bharath and Ng [9]. In brief, an 

isotropic lowpass filter and a set of four oriented bandpass complex analysis filters, with 

orientations at angles                     , are used for decomposition at a given 

scale. Thus, the orientation dominance at scale   is computed as: 
 

          
    

 
   

              

       
 

   
         

 
              

 

where     are the image coordinates,   
   

 is the output of the     oriented filter at scale  , 

  is defined as     and   is a normalisation parameter set at 1% of the maximum value in 

the original image. Scale   is defined as    
 

 
 
 where               . A visualization 

example of this field is shown in Figure 1(c). 

To optimally characterise the vessels using Eq.(1) we must first find the optimal value 

of scale  , and hence  , at which the LDO field will have maximum response. This is 

directly related to the distance of the polyp from the camera, as well as the width of the 

vascularity. This is a parameter that other studies in polyp characterisation have often 

neglected [10] or assumed constant by fixing the zoom factor of the endoscope [11]. Since 

this information is not known a priori for every image we take an iterative approach to 

selecting the best possible scale. We therefore compute the LDOs for a number of finer 

and coarser scales, starting with the original image and each scale separated by a factor of 

  
 

 up to a factor of    
 

 
    

. For each scale, we compute the complex LDO field and 

apply a low pass filter to eliminate abrupt changes. Finally we select the scale,  , with the 

maximum response by keeping the field with the largest mean scalar value of the 

magnitude of orientation dominance. 

As indicated by Kudo's pit pattern [5], routinely used by endoscopists, the vascularity 

of adenomas is denser, bolder and more irregular when compared to hyperplastic polyps. 

Ignjatovic et al. [12] made a good attempt to quantify this (using a similar approach) by 

examining histograms of the magnitude of the LDO field of the polyp surface. These 

features mainly encapsulate the difference in the prominence or boldness of the vessels but 

not their irregularity. We address this limitation by looking at how the angle of the 

orientation dominance field,            changes over the polyp surface.  

 

75



4 HADJILUCAS et al: FEATURES FOR OPTICAL BIOPSY OF COLORECTAL POLYPS  

 

 
           (a)   (b)          (c) 

Figure 2: Pooled histograms of angle of orientation dominance for Exera set: (a) 

adenomatous polyps; (b) hyperplastic polyps; (c) the difference of adenomatous and 

hyperplastic histograms 

 

To obtain this angle, we split the complex field into its real and imaginary parts, 

                            , and from complex arithmetic it follows that the 

angle of the orientation field,    can be obtained as in Eq. (2). 
 

                
        

        
               

 

The histogram of orientations is then computed, for each polyp, using 36 bins of 5
o
 

width that cover the interval [0
o
-180

o
). In addition, the histograms are weighted by the 

magnitude of the orientation dominance fields so that only locations with a strong 

magnitude (and hence possibly vasculature) will contribute to the orientation histograms. 

Lastly, to achieve rotation invariance, the orientation histograms are also registered with 

respect to the highest bin. This allows us to process all histograms together, irrespective of 

the angle the polyp had relative to the capturing device. The normalised pooled histograms 

of orientations for the adenomatous and hyperplastic polyps for the Exera set are shown in 

Figure 1(a) and 1(b) respectively. As illustrated in Figure 1(c), the difference between the 

two histograms is indicative of the irregularity of the vessel structure between polyp 

classes. 

To exploit this difference in a feature that can be used in a classifier, we select the bin 

interval that maximises the Fisher criterion,   in Eq.(3), between the two classes:   
 

    
       

 

   
    

    
            

 

where       are the means of the two classes and       is the standard deviation. 

Essentially maximising   is equivalent to maximising the distance between the means of 

the two classes whilst minimising within class variance. By selecting the bin intervals, we 

avoid including poor features that would dilute the accuracy of our classifier. 

In the case of Exera images, the bins that maximise   lie in the interval of [112.5
o
-

117.5
o
] along the orientation dominance axis. A number of other statistical features were 

also extracted from the angle of orientation histograms including kurtosis (the 

adenomatous polyp histogram has a more leptokurtic shape than the hyperplastic case), 

skewness, radius of curvature, entropy and the Kolmogorov-Smirnof statistic. For our 

classification, we grouped the newly formed orientation features along with the features 

obtained by Ignjatovic et al. [12] in an attempt to increase overall classification accuracy. 
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2.4 Classifier 

For polyp classification, we used a non-linear classifier by applying the kernel trick as 

described by Boser et al. [13] on a Support Vector Machine (SVM).  Our SVM uses a non-

linear radial basis function kernel. Due the small amount of data available,   - fold cross 

validation (leave-one-out) was used where       (118 images in our dataset) to assess 

how the classifier performance will generalise in an independent data set.  
 

   
 

 

3 Results and Discussion 

The results of SVM classification for each group of features (magnitude and angle of LDO 

field) for the Exera dataset are shown in Table 1. The corresponding Receiver Operating 

Characteristic (ROC) curve is shown in Figure 3. From the ROC curve we can conclude 

that each relevant feature can have a complimentary contribution to the overall 

classification accuracy of polyps. With overall accuracy of 86.44% in the case of Exera 

images the results are good for such a small feature vector. This is also comparable to the 

accuracy levels obtained by expert clinicians using chromoendoscopy (85-96%) [2]. We 

are confident that these metrics will improve on expansion of the datasets and feature 

vectors. Larger datasets will give greater generalisation and limit the irregularities between 

results of different datasets. Our future plan is incorporate a separate scale selection for the 

normal background mucosa and the foreground polyp (currently both use the same scale) 

and to build in better image optimisation methods to remove interlacing and chromatic 

aberration artifacts inherent to the mechanics of endoscopic system's image acquisition. 

One limitation of the proposed algorithm is that it is not real time. In particular it takes 6 

minutes to produce the LDO fields and do scale selection for high definition polyp images 

on a 2.6Ghz processor. In addition, the polyp boundaries were manually segmented in each 

image. We plan to address these limitations in the future by incorporating an automatic 

segmentation algorithm and using graphics processing units for LDO field generation. 

4 Conclusion 

We have presented an initial set of algorithms that can be used for in vivo optical biopsy of 

colorectal polyps, using high magnification NBI images. The features have been tested 

against a commonly used endoscopic system. Although many parts of the project are still 

 Sensitivity Specificity Accuracy 

Features based on 
magnitude of LDO 

field 

83.05 % 86.44% 84.75% 

Features based on  
angle of LDO field 

76.27% 61.02% 68.64% 

All features 83.05% 89.83% 86.44% 

Figure 3: Receiver Operating 

Characteristic curves for Exera dataset 

Table 1: Classification rates for 

different set of features for Exera 

dataset 
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in progress, we have been able to acquire good polyp classification metrics with 86.44% 

for Exera systems using an SVM based non-linear classifier, results comparable to the 

performance of expert endoscopists. We have also developed a scale selection strategy to 

use polyps acquired at varied magnification in the same dataset. In the future we plan to 

also examine the stability of features across the polyp surface for robust classification. 

 Although the system has its limitations, we believe it is a good first step towards 

an automated polyp classification system. Such a system could decrease the miss rate of 

potentially malignant lesions. When coupled into a review system or to automated camera 

acquisition systems this could lead to savings in time, cost and reduced patient risk. 
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Abstract

Morphological alternations of blood capillaries in the finger nailfold are indicative of
underlying connective tissue diseases. This requires close observation of the capillaries,
which can be conducted using nailfold capillaroscopy (NC) which is a standard method
for diagnosing diseases such as scleroderma or Raynaud’s phenomenon. Typically, de-
tection of NC scleroderma patterns (early, active, and late) is performed through manual
inspection by an expert. In this paper, we present an automated method of analysing nail-
fold capillaroscopy images and categorising them into NC patterns. A carefully chosen
set of texture features is extracted from the images which we then employ in a pattern
classification stage. For the latter, we apply an ensemble classifier to arrive at decisions
for each captured finger, which in a final stage are aggregated to form a diagnosis for the
patient. Experimental results on a set of 56 NC images from 16 subjects demonstrate the
accuracy and usefulness of our presented approach.

1 Introduction
Nailfold capillaroscopy (NC) is a non-invasive and affordable medical imaging technique
employed to assess the condition of capillaries in the nailfold. It is a reliable method to
assess micro blood vessel characteristics and is acknowledged as a standard method for di-
agnosing diseases such as systemic sclerosis (SSc) [10], Raynaud’s phenomenon [3], and
other connective tissue diseases such as dermatomyositis, antiphospholipid syndrome [5],
and Sjögren’s syndrome [20] which lead to morphological alterations of capillaries.

Such morphological changes include enlarged and giant capillaries, haemorrhages, loss
of capillaries, disorganisation of the vascular array, and bushy capillaries [4]. Patterns ob-
servable in NC images of SSc patients have been described in [14], and have been refined
into early, active and late patterns in [2].

These three NC patterns can be characterised as follows (see also Figure 1 for examples):
• Early (E): few giant capillaries, few capillary haemorrhages, relatively well preserved

capillary distribution, no evidence of loss of capillaries.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Examples of scleroderma patterns: (a) healthy subject; (b) early; (c) active; (d) late
SD pattern.

• Active (A): frequent giant capillaries, frequent capillary haemorrhages, moderate loss
of capillaries with some avascular areas, mild disorganisation of the capillary archi-
tecture, absent or some ramified capillaries.

• Late (L): irregular enlargement of the capillaries, few or absent giant capillaries, ab-
sence of haemorrhages, severe loss of capillaries with large avascular areas, severe
disorganisation of the normal capillary array, frequent ramified/bushy capillaries.

Scleroderma NC patterns are also used to evaluate other rheumatic diseases.
In this paper, we present an automated approach for determining scleroderma patterns

from NC images. For this purpose, we extract a set of texture descriptors from the images
and employ an ensemble classifier, generated by building multiple support vector machines
and combining their results using a neural network fuser. Decisions for individual fingers
are then aggregated to form a final diagnosis. Experimental results on a set of 56 NC images
from 16 subjects demonstrate the accuracy and usefulness of our presented approach.

2 NC Image Analysis

2.1 Pre-processing
Automated analysis of NC images is challenging due to various factors including image
noise, dust on lenses, micro-motion of fingers, and air bubbles in the immersion oil. A first
step is therefore to remove noise and enhance the images. Following [7, 8], we apply a
bilateral enhancer [9] on the captured images for this purpose.

2.2 Texture analysis
In the few works that attempt to perform automated analysis of NC images [13, 16, 22, 23],
single capillaries are extracted and their layout and shape characteristics used for pattern
classification. In this paper, we follow a different approach. Not only is exact extraction of
capillaries difficult due to the relatively poor image quality (even after enhancement), looking
at the examples of Figure 1 again, we can notice that it is possible to distinguish between
the different patterns almost ‘at a glance’. We therefore employ global image features for
analysing and classifying NC images [19].

In particular, we extract texture information from the images and use it in a subsequent
classification stage to determine the associated scleroderma patterns. While a variety of tex-
ture features exist, those based on local binary patterns [15] have been found to provide ex-
cellent performance for a variety of tasks, including texture classification [6]. LBP describes
the local neighbourhood of a pixel and, in its basic form, produces 256 texture patterns based
on a 3×3 neighbourhood. Neighbouring pixels are set to 0 and 1 by thresholding them with
the centre pixel value. The resulting sequence of 0s and 1s is then known as the local binary
pattern and a histogram of these patterns over the whole image is generated.
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LBP patterns are usually obtained from a circular neighbourhood, while rotation invari-
ance can be obtained by mapping all possible rotated patterns to the same descriptor. Fur-
thermore, certain patterns are fundamental properties of texture and may thus account for
the majority of LBP patterns. To address this, only uniform patterns can be utilised where a
uniformity measure is defined by the number of transitions from 0 to 1 or vice versa.

Uniform rotation invariant LBP descriptors are powerful texture features [6], however
in some preliminary tests we noticed that they did not work as well as we expected for
NC images. We consequently employ multi-dimensional LBP (MD-LBP) descriptors as
proposed in [18]. MD-LBP calculates LBP features at different scales but preserves their
relations by building a multi-dimensional texture histogram.

3 Pattern classification
Uniform rotation invariant MD-LBP texture features, obtained from 3 concentric circular
neighbourhoods are extracted from the NC images, and form the basis of a pattern classifi-
cation stage, where, based on training from known samples, we derive a classifier to identify
the scleroderma pattern of an image from its texture characteristics.

Recently, much attention in pattern recognition has been devoted to the development of
ensemble classifiers, also called classifier committees or multiple classifier systems [12], and
it is such an approach the we employ in this paper. Ensemble classifiers are based on the idea
that an appropriately constructed combination of predictors can give better results than any
single classifier.

Our proposed ensemble is carefully crafted and consists of three main phases:
1. Creation of a pool of diverse individual classifiers;
2. Pruning the pool by removing redundant predictors;
3. Using a trained fuser based on discriminants to combine the outputs of the classifiers.

In the following, we describe these steps in detail.

3.1 Classifier pool
Individual classifiers used as base models for the committee play a crucial role in the ensem-
ble design process. Instead of using a single feature selection method we employ several of
them. We thus generate a diverse pool of classifiers through application of different feature
selection algorithms; for L feature selection methods we construct a pool of L individual
classifiers ΠΨ = {Ψ(1),Ψ(2), ...,Ψ(L)}.

As base classifier, we utilise support vector machines (SVMs) [21] with polynomial ker-
nels, trained using the SMO procedure [17], and employing a tuning procedure to obtain
optimal cost and kernel parameters. We use eight different feature selection algorithms,
namely ReliefF [26], Fast Correlation Based Filter [25], Tabu Search Wrapper [11], Sim-
ulated Annealing Wrapper [11], Forward Selection [11], Backward Selection [11], Quick
Branch & Bound [11] and Las Vegas Incremental [11] to generate eight base classifiers.

3.2 Ensemble pruning
In the next stage, we want to ensure that only “valuable” committee members are used for
decision making, which we perform based on a diversity measure of the ensemble [1]. In
particular, we use a pairwise double-fault diversity measure for this purpose. Given two base
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classifiers h j and hk, let n(a,b) denote the number of training samples for which the output
of these classifiers is a and b respectively; a and b can take on the values 1 (indicating correct
classification) and −1 (indicating misclassification) respectively. The double-fault diversity
measure can then be calculated as

DIVDF (h j,hk) =
n(−1,−1)

n(1,1)+n(−1,1)+n(1,−1)+n(−1,1)
. (1)

Diversity for an ensemble of L base classifiers is calculated by averaging the measure over
all classifier pairs in the ensemble

DIVDF (Ψ) =
2

L(L−1)

L−1

∑
j=1

L

∑
k= j+1

DIVDF (h j,hk), (2)

which gives measure is in the interval [0;1], where 1 corresponds to a set of identical classi-
fiers and 0 to the highest possible diversity respectively. Classifier selection is achieved by
an exhaustive search over all possible combinations of committee members to identify the
(pruned) ensemble that minimises the diversity measure function.

3.3 Classifier fusion
For combining the different base classifiers, we employ a trained fuser based on discriminant
analysis (as opposed to using the predicted class labels). Assume that we have an ensemble
of K classifiers, {Ψ(1),Ψ(2), ...,Ψ(K)}, after the pruning procedure. For a given object x ∈
X , each individual classifier decides for class i ∈M = {1, ...,M} based on the values of
discriminants. Let F(l) (i,x) denote a function that is assigned to class i for a given value of
x, and that is used by the l-th classifier Ψ(l). The combined classifier Ψ uses the decision
rule

Ψ(x) = i if F̂ (i,x) = max F̂ (k,x)
k∈M

, (3)

where

F̂ (i,x) =
K

∑
l=1

w(l)F(l) (i,x) and
K

∑
i=1

w(l)(i) = 1. (4)

The weights are set dependent on classifier and class: weight w(l)(i) is assigned to the l-th
classifier and the i-th class.

The trained fuser we employ is a neural fuser implemented as a one-layer perceptron [24].
The values of support functions given by each of the base classifiers serve as input, while the
output is the weighted support for each of the classes. One perceptron fuser is constructed
for each of the classes, and may be trained with any standard procedure used in neural net-
work learning (we use the Quickprop algorithm). The input weights established during the
learning process are then the weights assigned to each of the base classifiers.

3.4 Patient classification
For NC diagnosis, typically several fingers are inspected as specific NC patterns might not
show on every finger. A decision is thus made based on all fingers and is conducted by a
simple majority voting. That is, the class with most decisions is taken as the final results,
while in cases of ties we reject a decision.
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Table 1: Classification results. Incorrect results are bolded.
Patient Finger 1 Finger 2 Finger 3 Finger 4 Diagnosis

Control 1 C C C - C
Control 2 E C C C C
Control 3 E A C - Reject
Control 4 C C C C C
Control 5 C C C E C
Early 1 E E E - E
Early 2 E E E E E
Early 3 E E C - E
Active 1 L L A A Reject
Active 2 A A A - A
Active 3 A A A A A
Active 4 A C A - A
Late 1 L L A - L
Late 2 A L L - L
Late 3 E L L A L
Late 4 L L L L L

4 Experimental Results

We carried out our experiments on a dataset of 16 subjects with NC images for three to
four fingers for each patient. The images were obtained at the Dermatology Unit, Clinical
Hospital of Chieti, following their standard protocol. A ground truth for all patients was
also obtained by manual inspection carried out by a consultant. Of the 16 subjects, three
were found to show early, four active, and four late patterns; the remaining five were control
subjects.

Each image is enhanced using a bilateral enhancer and MD-LBP texture descriptors (MD
-LBPriu2

1,3,5) are extracted. For evaluation, we perform standard leave-one-out cross validation
on a patient basis; that is, the classifier is trained on all but one subject for which we run the
test, and the procedure is repeated for all patients (i.e., 16 times in total).

The obtained results are summarised in Table 1 where we give both the results of clas-
sifying each of the fingers separately and the overall decision for the patient. From Table 1,
we can see that in most cases the correct pattern for a finger is identified, namely in 44 of the
56 cases which gives a correct classification of 79% on a per finger basis. When aggregating
the individual predictions, the correct patient diagnosis is obtained in all but two cases. In
these two cases (Control 3 and Active 1), patient classification is rejected. Overall, it is clear
that our approach shows good performance.

5 Conclusions

In this paper, we have presented an approach to analysing nailfold capillaroscopy images
with the aim to autmatically identify scleroderma patterns. For this, we extract a set of
texture features from the images and employ an ensemble classifier for decision making.
Our approach is shown to work well and to give good performance on a test dataset of 56
images from 16 patients. Future work will focus on capturing a larger dataset for evaluation
and alternative methods of aggregating individual finger classifications.
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Abstract

Pulmonary hypertension (PH) is a chronic disorder of the pulmonary circulation,
marked by an elevated vascular resistance and pressure. Our objective is to find an auto-
matic, non-invasive method for estimating the pulmonary pressure based on the analysis
of lung vessels from contrast enhanced CT images. We present a pulmonary vessel ex-
traction algorithm which is fast, fully automatic and robust. It uses an airway tree seg-
mentation and a left and right lung labeled volume to restrict the response of an offset
medialness vessel enhancement filter. On a data set of 24 patients, we show that quan-
titative indices derived from the vascular tree are applicable to distinguish patients with
and without PH.

1 Introduction
Pulmonary hypertension is a type of disease presenting high blood pressure in the lung ves-
sels. PH is defined as a mean pulmonary arterial pressure (mPAP) ≥ 25mmHg, and the gold
standard for determining it is invasive right-heart catheterisation (RHC) [9]. In severe cases
PH results in a markedly decreased exercise tolerance and heart failure.

A non-invasive alternative to RHC would be beneficial for diagnosis of PH. We investi-
gate the hypothesis, that a quantitative index of lung vascular tree structure, acquired by a
contrast enhanced CT, is correlated with PH. For vessel detection, we propose an algorithm
that uses a combination of lung- and airway segmentation, together with a sophisticated ves-
sel enhancement filter to obtain a proper segmentation of the left and right pulmonary vessel
trees separately, even in patients showing severe pathologies. The algorithm is fully auto-
matic, computationally efficient and able to handle large datasets. Analysis of the vessel tree

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

87



2 HELMBERGER: PULMONARY VESSEL EXTRACTION AND ANALYSIS

is based on two readouts, the fractal dimension (FD) and tortuosity, which are computed from
the obtained vascular tree and compared to the patient’s clinical data derived from RHC.

1.1 Related Work
A large number of 3D vessel segmentation algorithms for investigating, e.g. pulmonary
vessel trees, coronary arteries, or brain vessels have been presented in the literature. Typi-
cal algorithms are based on vessel enhancement filters, which analyse the eigenvalues and
-vectors of the Hessian matrix [4]. A recent, comprehensive overview of different enhance-
ment and segmentation techniques can be found in [5].

Previous works showed a correlation of the pulmonary vascular tree complexity with PH.
In [6] FD is reported to correlate with pulmonary vascular resistance in children suffering
from PH. In [3] it was shown, that the FD of the pulmonary arteries in PH patients is highly
correlated with mPAP. However, these two studies use maximum intensity projections (MIP)
of the vessel trees to compute the FD, whereas we calculate our quantitative readouts in 3D.
We are not aware of any work that correlates vessel tortuosity with PH.

2 Method
At the core of our method is a multi-scale vessel enhancement (VE) filter based on the
Hessian matrix. It is a modified version of [8], and uses the eigenvalues of the Hessian matrix
to detect candidate voxels inside the vessels, and an offset-medialness boundary measure
perpendicular to the estimated vessel direction to compute the vessel probability [4]. The
medialness is limited to the right and left lung, which is derived from an intensity-based
lung segmentation. After non-maximum suppression of the medialness, the centerlines are
detected and connected using a shortest path approach. Figure 1 shows the flowchart of our
automatic vessel detection.

Figure 1: Vessel extraction flowchart. (a) input CT-image, (b) lung- and airway segmentation, (c)
medialness restricted to the lung (blue: high vessel probability), (d) vascular tree

2.1 Lung and airway segmentation
A prerequisite for our vascular tree extraction is a segmentation of left and right lungs, re-
spectively, to restrict the reconnection of the vessel centerlines. We use a coarse airway
segmentation consisting of an iterative region growing procedure starting at the trachea, and
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a labeling into left and right airway tree (separated at the carina). This labeled airway tree
is taken to divide a threshold based lung segmentation into left and right lung, respectively,
followed by morphological closing to refine the lung segmentations. The airways guarantee
proper separation even in difficult cases as it is presented on Figure 2.

(a) (b) (c)

Figure 2: (a) example CT image, (b) coarse lung segmentation after separation, (c) refined lung
segmentation, separate left (gray) and right (white) lung

2.2 Vessel enhancement

We enhance vessel like structures using a modified version of the vessel enhancement filter
proposed by Pock et al. [8]. It uses the eigenvectors and values of the Hessian matrix,
combined with an offset medialness response to estimate a vessel probability. The airway-
and lung segmentations from Section 2.1 are used to restrict the vessel enhancement output
to the region of interest, i.e. the lungs without the airways. To detect a wide range of different
vessel radii, the filter is embedded within a multi-scale framework.

To get the vessel enhancement filter response, we calculate the eigenvalues |e1| ≥ |e2| ≥
|e3| and the associated eigenvectors v1, v2 and v3 of the Hessian matrix H σ (x) at each scale
σ . To sort out bright tubular structures on dark background we check that e1 < 0 and e2 < 0
holds. In points that fulfill this condition, the smallest eigenvector v3 gives an estimation for
the vessel direction. Perpendicular to the vessel direction, in the cross section plane of the
tube given by the eigenvectors v1 and v2, we evaluate boundary information along circles of
different radii r. We define the boundary gradient B(x) = σ∇Iσ (x), with Iσ (x) being the CT
image convolved with a Gaussian kernel with variance σ . An initial response is given by the
median of the N = b2πr+1c boundary contributions bi = |B(x+rvαi)vαi |, which we denote
as R+

0 . A problem of R+
0 (x,r) is that it also produces responses at isolated edges. To avoid

this, a measure of symmetry is introduced:

S(x,r) = 1− s(x,r)
b

where s(x,r) is the median absolute deviation of the boundary samples and b the median.
The final boundary response is computed as:

R+(x,r) = R+
0 (x,r)S(x,r)

3
2

To suppress responses at the border of vessels, the gradient magnitude at the center of the
vessel is combined with the offset medialness from above:

R(x) = max{R+(x,r)−σ |∇Iσ (x)|,0}

The final vesselness response is the maximum response from all different scales and radii.
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2.3 Centerline extraction
In a non-maximum suppression step [1], at each position x with a medialness R(x)> thmin,
we sample 8 points on a circle in the plane perpendicular to the estimated vessel direction.
If the medialness response at x is smaller than on any of those 8 sampled points, it is set
to zero. This results in a large number of vessel centerline fragments. The centerlines are
not connected, because at branching points, where the tubularity assumption fails, we get
a low medialness response. Next, small centerline fragments (less than 5 N26-connected
voxels) are removed, and all maxima lying on the airway border are cleared. To reconnect
the centerline fragments, we apply a Dijkstra-like shortest path algorithm. At each lung
separately, we connect all centerline candidate points to the center of the image. As a cost
function we combine the medialness with the gradient magnitudes of the CT image. The
separate processing of right and left lung ensures avoiding wrong connections through the
mediastinum. The merged trees from right and left lung form the final vessel tree (see Fig. 3).

(a) (b)

Figure 3: Representative results showing a patient with (a) and one without PH (b). No visual differ-
ences in the structure of the vascular trees are apparent.

3 Analysis of the pulmonary vascular tree
Our clinical application is the detection of PH, a chronic disorder of the pulmonary circula-
tion, marked by elevated vascular resistance and mean pulmonary arterial pressure (mPAP),
respectively. Our hypothesis is, that the structure of the pulmonary vascular tree shows
quantifiable differences between healthy patients and patients diagnosed with PH. For anal-
ysis we compute two measures: the fractal dimension (FD) and the distance metric (DM).
Our patient cohort from the clinical study consisted of 24 patients, who underwent contrast
enhanced CT.

3.1 Fractal Dimension
The fractal dimension of the vessel centerlines was calculated by applying a 3D extension
of the well-validated box counting method [3]. Box counting consists of dividing the vessel
centerline image into a grid of equal boxes with size δ , and counting the number of boxes
containing part of the vessel centerlines. This process is repeated for different box sizes
(from one pixel up to 100 pixel side length). The fractal dimension is equivalent to the slope
of a line fitted on a double logarithmic plot of the number of boxes against the box size δ .

3.2 Distance Metric
Another quantifiable property of the vessels is their tortuosity, which is a readout of twist-
edness [2]. The most common metric of vascular tortuosity is the distance metric, which
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provides a ratio of the actual vessel length to the linear distance between its endpoints. We
split the vascular tree into vessel segments, where a segment is defined as the path between
two branching points or between a branching- and an end point of a vessel. The 3D length of
the vessel segment dl divided by the Euclidean distance between its endpoints de (Figure 4)
results in a dimensionless number. The distance metric is calculated for all pulmonary vessel
segments and the mean is taken for quantitative analysis.

Figure 4: 3D rendering of vessel centerlines with the bronchi (blue) and the heart with main pul-
monary vessels (red). Inset shows the computation of the distance metric. The length of the vessel
segment is divided by the Euclidean distance between the two endpoints, DM = dl

de
.

4 Results
We found a correlation between mPAP and the DM of r = 0.69 (Pearson, p = 0.0002) (Fig-
ure 5a). As expected, there was a correlation of DM with the pulmonary vascular resistance
(PVR; Pearson r = 0.66, p = 0.0004, Figure 5b) as this parameter correlates with mPAP. The
ROC curve shows a discriminative power of this parameter with an AUC = 0.87 (Figure 5c).
There was a significant difference between the DM of patients with PH and without PH (Ta-
ble 1). The mean value of the FD in our patient cohort was 2.35, which is in good agreement
with previously reported values from similar studies [7]. There was no difference between
the 3D FD of patients with and without PH (Table 1). Moreover, no correlation of 3D FD
with mPAP or PVR could be observed.

Table 1: Values of distance metric and fractal dimension. Data are presented as mean±SD (range).
The significance was tested with t-test (* p < 0.05, ns = not significant).

5 Conclusion
We have presented a fully automatic approach for vascular tree extraction and analysis from
CT images based on a multi-scale vessel enhancement filter. Due to a parallel GPU im-
plementation, it processes high-resolution CT data in around 10 minutes, thus enabling the
potential use in daily clinical routine. On 24 patients from a clinical PH study, we showed
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Figure 5: Correlation of distance metric (DM) with (a) mean pulmonary arterial pressure (mPAP),
and (b) pulmonary vascular resistance (PVR; R = linear correlation coefficient, r = Pearson correlation
coefficient, *** p<0.001). (c) Receiver-operator curve for DM determining mPAP ≥ 25 mmHg (AUC:
area under the curve).

that there is no correlation between PH and FD. The correlations reported in [3] are likely
due to their patient cohort consisting of children where the lung is still under development, or
due to the MIP’s used in the study [6]. In adult patients we have found that tortuosity instead
of FD is correlated with pulmonary hypertension, showing the feasibility of non-invasive
detection of PH with our vessel extraction and analysis algorithm in contrast enhanced CT.
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Abstract
We present a novel tool for wrist pathology diagnosis by estimating the 3D poses

and shapes of the carpal bones from single view fluoroscopic sequences. A hybrid sta-
tistical model representing both the pose and shape variation of the carpal bones is built,
based on a number of 3D CT data sets obtained from different subjects at different poses.
Given a fluoroscopic sequence, the wrist pose, carpal bone pose and bone shapes are es-
timated iteratively by matching the statistical model with the 2D images. We propose a
method for constructing a ‘standard’ pathology measurement tool for automatically de-
tecting Scaphoid-Lunate dissociation conditions. Evaluation on simulated fluoroscopic
sequences produced 100% sensitivity and specificity. Evaluation on real fluoroscopic
sequences achieved 83% sensitivity and 78% specificity.

1 Introduction
The wrist joint is complex, and the maintenance of the normal relationship of the carpal
bones, both at rest and on movement is governed by intercarpal and extrinsic ligaments. No
tendons insert onto the carpal bones themselves, and their movements are therefore dictated
by the movements of the surrounding bones. Knowledge of the 3D configurations of the
bones in the wrist (carpal bones, radius and ulna) can lead to diagnosis of soft-tissue in-
jury. However, clinically it is infeasible to apply 3D imaging (e.g. CT, MR) routinely in
such cases. In particular, these are static images of a dynamic problem. The current method
of diagnosing these conditions is by examining 2D video fluoroscopy sequences showing
movement of the hand from full ulnar to full radial deviation and from full flexion to exten-
sion in two orthogonal views, in conjunction with plain-film radiographs at specific poses
(stress views). From these images clinicians can infer the three-dimensional translations and
rotations of the carpal bones that take place during wrist movement, and arrive at a differen-
tial diagnosis on the basis of variations from normal bone kinematics. The interpretation is
difficult and the accuracy of diagnosis depends wholly on the experience of the practitioner.
If the 3D bone positions could be determined automatically from 2D clinical radiographs,
the diagnosis of associated soft-tissue injury, could be significantly improved.

c⃝ 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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A number of studies have represented the carpal kinematics using CT or MR data [2,
6]. More recently, van de Giessen et al. [7] introduced a 4D statistical model that locally
describes the relative positions of the carpal bones in pre-defined poses, with the aim of
detecting abnormal bone spaces. The work we present here is different from this, in that
we intend to detect abnormalities using 2D fluoroscopic sequences rather than 3D volume
data sets. In our previous work [3], we have described the method of estimating the 3D
kinematics from AP view 2D fluoroscopic sequences. In this previous framework, a 3D
statistical pose model (SPM) and statistical shape model (SSM), which were built from 25
subjects each at 3 radial-ulnar poses, are used to match with the 2D images by iteratively
finding the optimum pose. In this paper, we extended the statistical training data to cover
flexion-extension movement and build a unified shape model for all bones. More importantly,
we demonstrate the capability of using the estimated 3D kinematic poses for wrist pathology
diagnosis.

2 3D Kinematics Estimation from Fluoroscopy Sequences
Using the method described in [4], we generated a SPM based on transformation parame-
ters of each bone with respect to a common reference coordinate system, as well as a SSM
point distribution model. We extend the model building in [4], by using all the five poses
(neutral pose and four extreme poses in flexion-extension and radial-ulnar deviations) from
25 subjects to cover the full range of wrist motion. Additionally, instead of building SSM
for each individual bone, we build a single SSM that include all bones by representing the
shape points of all bones in a single column vector in a consistent order. This maintains the
nature of the relationships between adjacent bone shapes and reduces the number of shape
parameters. In our experiments, only the first two significant components of the SPM are
used, which keeps 90% of variation. The first component reflects the flexion-extension mo-
tion and the second component represents the radial-ulnar motion. The remaining deviation
of an individual from the pose model is compensated by a local pose refinement for each
individual bone. Based on the SPM and the SSM, a hybrid statistical mesh model can be
built by using the Crust mesh construction algorithm [1]. Figure 1 shows the poses of the
first two components of the SPM (represented by the mean shapes of each bone) and the first
mode of the shape variation.

The statistical mesh model is then used to match with each of the frames in the fluoro-
scopic sequence to infer the 3D motion and bone shapes. The position of the model is firstly
initialised interactively by indicating a central point on the radius in the first frame of the
fluoroscopic sequence. Then the poses of the bones in each frame are estimated in sequence,
the poses from the current frame being used as the starting poses of the next. The fluoro-
scopic image is iteratively matched with a simulated projection generated from an updated
pose of the mesh model. The cost function for optimising the global parameters for rigid
alignment, the SPM and SSM is the same as that described in [3], denoted E1, and consists
of the normalised correlation between the projected and fluoroscopic gradient images. The
cost function is modified in the local refinement procedure (Equation (1)), by adding a term
that keeps the estimated pose close to the pose model, preserving the topology of the carpal
bones when the intensity term E1 is weak. The local refinement accommodates deviations
from the linear motions imposed by the linear SPM model.

E = E1 +ωexp(−
1
p ∑p

i=1 ||xg
i −T l(xg

i )||2
2σ2 ) (1)
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Figure 1: Top row: The poses of the first component of the pose model (lateral view) that
mainly describes the flexion-extension movement. Middle row: The poses of the second
component of the pose model (AP view) that mainly represents the radial-ulnar movement.
Bottom row: the first component of the shape model. (Major shape variations occur in the
Ulna, Radius and Lunate.) In each case the mean ± 2 s.d. are shown.

In equation (1), xg
i represents the ith 3D mesh point after the global pose and pose model

estimation. p is the total number of mesh points of the currently evaluated bone (In our case,
p=1002 for each bone). T l is the local transformation matrix for that bone. ω is the weighting
parameter that balances the image intensity term E1 and the added geometric penalty term.
σ is the standard deviation of the Gaussian distribution. In our evaluation tests, ω = −0.2
and σ = 10 were experimentally determined and used.

3 Measurement Model for Pathology Detection
In [3], we have reported the relative positions of the carpal bones with respect to each other
can be estimated with an accuracy of about 1 mm. Here, we present a measurement tool
based on the estimated 3D wrist poses for pathology detection. One condition that may
be assessed using the measurement of relative bone distances is dissociation, where the 3D
distance between the bones is larger than normal. As an example of this, we investigate
Scapho-lunate dissociation, which is one of the most common of these conditions.

One important issue is the reliability of the 2D-3D registration, as it may give mis-aligned
results due to low quality of the fluoroscopic sequence. Since the pose determined by the
kinematic model (the ‘kinematic pose’) represents the ‘average’ pose of the carpal bones, the
local deviation from the kinematic pose should be relatively consistent across the sequence.
A particular frame showing a larger deviation from the kinematic pose than other frames
may indicate a failed registration at that frame. Hence, the 3D Euclidean distance between
the local refined bone pose and the kinematic pose is used to indicate the reliability of the
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registration, which is calculated by equation (2).

r =
1
p

p

∑
i=1

||xg
i −T l(xg

i )||2 (2)

In equation (2), xg
i , p and T l have the same meanings as in equation (1). Then the value

r is subtracted from the mean deviation r̄ of the whole sequence. This is denoted as δr.
The registration was considered as successful if the deviation δr is smaller than 1 voxel
(experimentally determined).

The 3D CT volumes of 17 subjects, assessed radiologically as not suffering from scaphoid-
lunate dissociation, were used to determine a ‘standard’ model, based on neutral and extreme
radial-ulnar poses. The statistical mesh model was aligned with these volumes by estimating
the global rigid transformation parameters, the SPM parameters and the local transformation
parameters for each bone. The kinematic poses at intermediate wrist positions were deter-
mined by cubic spline interpolation between the extreme and neutral positions, sampled at
every two integer values of the second (radial-ulnar) component of the SPM, giving 36 wrist
positions. In calculating the distance between bones we use the distance between corre-
sponding surface points. Each bone is represented by the same number of surface points
(1002), determined when the shape model was constructed using the minimum description
length method [5]. Correspondences are determined using the index of each point, giving a
consistent set of correspondences. Here we evenly sampled the points and used a reduced
number of surface points (N=100, rather than 1002 used in building the model) for improved
computational efficiency. Equation (3) and (4) show that we calculate the Mahalanobis dis-
tances (MD) using the means and covariances of individual pairs of corresponding points.
Letting lk

ϕ, j and sk
ϕ, j represent the jth surface point on the kth sample volume at the current

pose ϕ on the lunate and scaphoid respectively, the relative distance between the lunate and
scaphoid at point j is

dk
ϕ, j = lk

ϕ, j − sk
ϕ, j (3)

dk
ϕ, j is a 3×1 vector, so the mean mϕ, j and covariance matrix Cϕ, j of the jth point pair based

on all k samples at pose ϕ can be calculated. The Mahalanobis distance between the new test
data and the model at pose ϕ is calculated using equation (4).

mϕ =
1
N

N

∑
j=1

√
(dnew

ϕ, j −mϕ, j)TC−1
ϕ, j (d

new
ϕ, j −mϕ, j) (4)

To assess a new wrist, the 2D radial-ulnar fluoroscopic sequence can be registered with
the statistical model using the method described in section 2, and the wrist poses determined
by the SPM component. The Mahalanobis Distance (MD) can then be calculated (Equation
(4)) at each pose ϕ to measure the deviation from the ‘standard’ model. The results for the
25 (17 healthy and 8 abnormal) simulated sequences and 15 (9 healthy and 6 abnormal) real
fluoroscopic sequences are shown in figure 2. In this figure the triangles represent healthy
subjects and the squares represent abnormal subjects. In conducting this evaluation, a leave-
one-out method was used in assessing the normal subjects, while the complete model was
used for assessing the abnormals, as they did not contribute to the model. Since all 25
subjects contributed to the SSM, leave-one-out evaluation was used in all cases. The lengths
of the bars through the data points represent the reliability of each registration, as calculated
in Equation (2).
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4 Results and Discussion
As shown in figure 2, for the simulated data, most of the abnormal subjects (squares) have
larger MDs than the normal subjects (triangles). The distinction between the two groups
is less pronounced for the real fluoroscopic sequences. Additionally, the registration is less
reliable compared with the simulated data, due to blurring effects generated by the wrist
moving too fast.

By varying the threshold (the same threshold for all kinematic poses) of MD for classi-
fying the normal and abnormal cases, the Receiver Operating Characteristics (ROC) curve is
generated and shown in figure 3(a). The ROC for both the simulated data and real data are
presented, using only the successful registrations (Eqn. (2)). This resulted in using 89.3%
of the frames for the simulated sequences and 83.5% of the frames for real sequences. The
thresholds that produce the best error rate for simulated and real data are 2.75 and 2.86 re-
spectively. These values result in 87.0% true positive rate (TPR) and 14.0% false positive
rate (FPR) for simulated sequences, and 70.0% TPR and 30.0% FPR for real sequences.
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Figure 2: (a) The Mahalanobis distances of 25 simulated sequences for Scaphoid-Lunate
measurement. (b) The Mahalanobis distances of 15 real sequences for Scaphoid-Lunate
measurement.
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Figure 3: (a) ROC curve of the simulated data and real data for frame classification. (b) ROC
curve of the simulated data and real data for subject diagnosis.

Figure 3(a) represents the accuracy of classification of individual frames. The diagnos-
tic conclusion for an individual can be obtained, by combining the classification results for
all of the frames of the sequence. The test set for diagnosis is small, and the result rather
dependent on a judicious choice of values for the MD threshold and the method used of
combining the frames. We define the normal frame ratio (NFR) as the number of successful
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frames classified as ‘normal’ divided by the total number of successful frames in the as-
sessed fluoroscopic sequence. If the NFR is greater than a threshold, the particular subject
is considered as ‘healthy’, otherwise is diagnosed as having Scaphoid-Lunated dissociation.
Figure 3(b) shows the ROC curve obtained by varying the NFR, using a MD threshold of
2.5 (experimentally selected) for both the simulated and real data set. The highly quantised
nature of the ROC curve reflects the size of the test set. The best operating point on this ROC
curve is found at a NFR of 0.33 (requiring two thirds of the detected frames to be classed as
abnormal before returning an abnormal diagnosis) resulting in sensitivity and specificity of
100% for simulated data and around 80% (83% TPR, 22% FPR) for real data. Other choices
of MD threshold resulted in sensitivity-specificity combinations in the range (68%-90%) to
(85%-70%).

We have presented a complete framework that is able to infer the 3D motion of carpal
bones from a single view fluoroscopic sequence. It uses a hybrid statistical model to esti-
mate both the pose and bone shapes from the fluoroscopic sequences allowing the motion
of carpal bones during radial-ulnar deviation to be estimated. The major contribution of this
paper is that we conducted a preliminary evaluation of a method for constructing a pathology
measurement tool for automatically detecting Scaphoid-Lunate dissociation conditions. For
the simulated data, it produced 100% sensitivity and specificity. For the real data, it achieved
83% sensitivity and 78% specificity. This tool could be a generic method for automatic,
objective assessment of dissociation conditions. We have demonstrated its use with fluo-
roscopic video input. It appears that the limitation in accuracy arises largely from motion
blurring effects in the video sequences. The method could equally well be applied using 2D
radiographs at fixed positions. We would investigate the use of the model for diagnosis of
other wrist diseases in our future work.
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Abstract 

In this paper we describe methods suited for developing intelligent histological 

imaging procedures based on mathematical morphology and a discrete version of the 

Region Connection Calculus (RCC) known as Discrete Mereotopology. The 

implementation of the discrete versions of RCC5 and RCC8 relation sets enables 

computation of the spatial relationships between image regions and reasoning about 

those relations in segmented digitised images. It also opens the possibility of defining 

histologically relevant models of biological structures (cells and tissues) so the 

relations of their components can be assessed algorithmically. A Java plugin 

implementing the RCC5D and RCC8D relations sets for the popular imaging tool 

ImageJ was developed. We illustrate an application for automated cell sorting on 

cultured fibroblasts. 

1 Introduction 

The term “intelligent imaging” covers applications designed to perform a certain level of 

mechanical reasoning about image contents. The usefulness of such procedures for 

histological imagery relies on: 1) the possibility of relaxing the need for expert (human) 

supervision (e.g. in high throughput applications) where the size of the data or time 

requirements make it impractical to rely on observer-based confirmation of results and 2) 

enabling algorithmic quantification and categorisations of imaging results. For example, 

segmentation correctness could be mechanically tested against an expected model of image 

contents and used to qualify the performance of segmentation procedures. The methods 

presented here graft sets of relations defined in a spatial logic called Discrete 

Mereotopology (DM) [1, 2] onto Mathematical Morphology (MM). DM is a discrete 

version of the well-known spatial logic RCC [3]. These relations can be used to describe 

the topology and organisation of organelles, cells and tissue components in images. These 

relations comprise a set of contact, overlap and part-whole relationships in discrete 2D 

space that can hold between pairs of binary regions in a single image or between regions 

across different images. Two jointly exhaustive and pairwise disjoint (JEPD) relation sets 

(RCC5D and RCC8D) are factored out which are discrete versions of the RCC5 and RCC8 

relation sets well known in Qualitative Spatial Reasoning [1-4]. The RCC5D and RCC8D 
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relation sets were implemented as a plugin for ImageJ [5] written in Java [6]. These 

relations model “external contact”, “partial overlap” and “tangential” and “non-tangential” 

connections, among others. It has been shown [1, 6] that the discrete quasi-topological 

interior and closure functions defined within DM map directly to the erosion and dilation 

operators of MM respectively. Therefore, the DM relations can be implemented using 

standard morphological routines available in most image processing environments. In 

addition the nature of the logic enables imaging packages to be used as a front-end for 

Artificial Intelligence methods for querying and analysing images as well as exploiting 

automated, mechanical reasoning programmes. 

2 Implementing Discrete Mereotopology  

The domain is modelled using a two-sorted mereotopological logic [2] as a specification 

language. Here, pixels are denoted by lower-case letters (x, y, z,...) and regions by upper-

case letters (X, Y, Z,...). Predicates are strings of upper-case or lower-case letters prefixed 

with upper-case letters, and functions are strings of lower-case letters. Standard readings 

are assumed: the symbols: , ∃, &, ∨, , , ≡ are respectively read as for all, there 

exists, and, or, materially implies, not, and if and only if.  

In DM, regions mapping to digital images as a model are defined as (possibly empty) 

sets of pixels. The spatial relations are defined as follows. Inclusion is: X Y ≡ x (xX 

→ xY), and the mereological (non-null) part/whole relation is: P(X,Y) ≡ X  Y & X ≠ . 

The mereological proper-part relation is defined as: PP(X,Y)≡P(X,Y) & X≠Y and overlap 

is: O(X,Y) ≡ X ∩ Y ≠ . The connection (or contact) relation between regions is: C(X,Y) ≡ 

xy(xX & yY & A(x,y)). The dyadic adjacency relation A is axiomatised to be reflexive 

and symmetric. We additionally assume an 8-connected square-based pixel array so that 

two pixels x and y are adjacent if they are nearest neighbours or equal, meaning A(x,y) is 

satisfied if d(x,y)≤√2 where d: Z² x Z² → ℜ. The introduction of adjacency extends the set 

of overlap relations (used to define the RCC5D relations set) enabling the remaining 

discrete counterparts of RCC8 [6] relations to be defined. The “D” suffix is added to 

RCC5/8 to emphasise that the relations defined have models in discrete space. Models of 

the five relations of RCC5D and the eight relations of RCC8D are shown in Figure 1. 

The eight relations are defined below (Table 1) with their MM counterparts. For the 

latter, a structuring element B is assumed and defined as a filled 3x3 neighbourhood pixel 

array. The main relations are read as follows: DC (“is disconnected from”), EC (“is 

externally connected with”), PO (“partially overlaps”), TPP (“is a tangential proper part 

of”), NTPP (“is a non-tangential proper-part of”), EQ (“is identical with”), while TPPi and 

NTPPi are inverses of TPP and NTPP respectively. Using this approach, weaker JEPD 

relation sets become easily definable, for example the spatial constraint language RCC5 

with five base relations {DR,PO,PP,PPi,EQ}, with DR (“is discrete from”) as the least 

upper bound (lub) of DC and EC, PP (“is a proper part of”) mapping to TPP lub NTPP, 

and similarly for PPi as TPPi lub NTPPi. It is worth noting that the set of eight JEPD 

relations defined in RCC8D can be extended further, however here we restrict the 

relationships to RCC5D and RCC8D. 
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Figure 1. The RCC5D and RCC8D relations. Regions are shown as 2D discs (the bright 

disc is X and the dark is Y). The models for RCC5D cover the cases shown in RCC8D. 

Where one or both regions are null, the RCC5/8D relation DR holds. DR: discrete from, 

DC: disconnected from, EC: externally connected, PO: partially overlaps, PP: proper part, 

TPP: tangential proper part, NTPP: non-tangential proper-part, EQ: identical with, PPi, 

TPPi and NTPPi are inverses of PP, TPP and NTPP respectively. 

 

Table 1. The RCC8D relations implemented using mathematical morphology. 

Discrete Mereotopology Mathematical Morphology  

DC(X,Y) ≡ ¬C(X,Y) DC(X,Y):= (X⊕B) ∩ Y= Ø (1)  
EC(X,Y) ≡ C(X,Y) & ¬O(X,Y) EC(X,Y):= (X ∩Y=) & ((X⊕B) ∩ Y≠Ø) (2)  
PO(X,Y) ≡O(X,Y) & ¬P(X,Y) & ¬P(Y,X) PO(X,Y):= (X ∩Y≠) & (X-Y≠) & (Y-X≠Ø) (3)  
TPP(X,Y) ≡ PP(X,Y) & ∃Z (EC(Z,X) & EC(Z,Y)) TPP(X,Y):= (X-Y=) & (Y-X≠) & (((X⊕B)-Y)≠Ø) (4)  
NTPP(X,Y) ≡ PP(X,Y) & ¬∃Z (EC(Z,X) & EC(Z,Y)) NTPP(X,Y):= (X-Y=) & (Y-X≠) & ((X⊕B)-Y)= Ø (5)  
TPPi(X,Y) ≡ TPP(Y,X) TPPi(X,Y):= TPP(Y,X) (6)  
NTPPi(X,Y) ≡ NTPP(Y,X) NTPPi(X,Y):= NTPP(Y,X (7)  
EQ(X,Y) ≡ P(X,Y) & P(Y,X) EQ(X,Y):= (X-Y=) & (Y-X=Ø) (8)  

⊕: morphological dilation, B: structuring element, “-” is the diff or logical subtraction operation.    

 

2.1 Implementing RCC5/8D 

A plugin for ImageJ [5] was written in Java [6] to compute the set of RCC5D and RCC8D 

relations. The input is two binary images, X and Y, with the regions to be tested. These can 

represent, e.g. labelled cells, nuclei or tissue compartments segmented with separate 

procedures or imaging modalities. The image frame sizes are expected to correspond to the 

same scene position exactly. The relation between the objects in X and Y can be computed 

from a series of nested tests on the overlaps (logical AND) and set-theoretical differences 

(diff operation, Table 1) between various combinations of original and dilated versions of 

the images.  

An alternative, more efficient, practical approach consists of encoding the binary 

images with values 0, 1 for X and 0, 2 for Y, and inspect the histogram of the sum of the 

two images (which will have for values from 0 to 3). This gives an indication of which of 

the 5 RCC5D relations holds. From those, a further test provides the eight RCC8D 

relations. A diagram of this algorithm (implemented in our plugin RCC8D) is shown in 

Figure 2. An additional plugin was written to deal with multiple regions in each image and 

an application is described in section 3. 
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Figure 2. The alternative RCC algorithm. Images X and Y are encoded with pixel values 0, 

1 and 0, 2 respectively (0 is 'background', non-zero values are region pixels). The 

histogram H of the arithmetical sum of the images (X+Y, Test 1) can result in various 

combinations of zero and non-zero counts in bins H0 (background), H1 (pixels occupied 

only by region X), H2 (pixels occupied only by region Y), or H3 (overlapping regions). 

This allows finding the RCC5D relationship held. E.g. if the number of counts in 

histogram bins H1 and H2 is both 0 and for the sum (H3) is >0 (overlap), EQ holds. This is 

shown in the figure as (H1==0 H2==0 H3!=0). In the case of RCC8D, the relations PP, PPi 

and DR are subjected to an additional operation (Test 2), depending on the Test 1 result. 

D(X) and D(Y) symbolise the morphological dilation of images X and Y respectively. 

3 Intelligent imaging in the histological domain 

When performing tests between two images holding one region each, the RCC8D plugin 

results can be output to a text window or retrieved programmatically by querying the 

image via ImageJ’s image attributes (variables stored in the images). However, storing 

multiple object relations (between all pairs of regions in both images) requires a table. We 

developed an additional plugin (RCC8D_Multi) that generates a table of relationships 

between all the objects in the two images restricted to connected components. Those are 

stored as an 8 bit image (named “RCC”) where the pixel coordinates x and y encode the 

index of the regions in images X and Y and the pixel value is a numerical relation code. For 

example, row 0 in the RCC image table (Figure 3C) encodes the relationships between the 

first region (index 0) in image X and all the other regions in image Y; likewise, the relation 

between region index 4 of image X and region index 15 of image Y is given by the value of 

pixel with coordinates (4, 15). Again, attributes are set to the RCC table via the following 

keys to facilitate querying the table programmatically: mode (values indicating which logic 

was used RCC5D or RCC8D), imageX and imageY  (the images’ names).  
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3.1 Example – model-based cell sorting 

Figure 3 shows an example analysis based segmented images NIH/3T3 fibroblasts cultured 

on glass coverslips. Figure 3B represents the binarised nuclei obtained with a greyscale 

threshold, and 3C shows the cell profiles. We aim to extract cells which have been 

segmented successfully based on the relationship between their nuclei and cytoplasms. 

 

Figure 3. An image of cells in culture (A), the set of 90 segmented nuclei (B) and 97 

cell/cytoplasm profiles (C). To identify “model cells” (i.e. with a single associated nucleus), 

image D is computed by the RCC8D_Multi plugin to encode in a grey value the RCC8D 

relations between the nuclei (indexed in the x axis) and cytoplasms (y axis). This enables 

identifying cells without a nucleus (E), model cells satisfying the mereotopological 

relations EQ, TPP and NTPP (54 instances, composite in F) and cells not fulfilling the 

model (G). The latter contains several mismatching types (cells with >1 nucleus and cells 

sharing partially overlapping nuclei). Panel H shows the classified relations colour coded 

on the boundary of segmented objects: nuclei (green), cytoplasm of model cells with 1 

nucleus (in red), cytoplasm without a nucleus (yellow) and incorrectly segmented cells 

with multiple or overlapping nuclei (blue). 

 

A “model cell” is defined in this example as a region containing a single nucleus, even 

though, biologically speaking, multinucleated (e.g. osteoclasts, Langhans-type giant cells, 

etc.) and non-nucleated cell types (human erythrocytes, bacteria) also exist. In RCC8D the 

three “part” (P) relations (i.e. TPP, NTPP and EQ) are used to define a “model cell” such 

that CellBody(X) & ∃Y (Nuc(Y) & P(Y,X)), where a CellBody is a candidate cell profile 
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(regions in 3C) regardless of the relationship with any nuclei in 3B. By examining the 

relationships table generated by the RCC8D_Multi plugin (Figure 3D), we can query the 

relations of any nucleus with any cell to find those cases where P(nuci, cellbodyj) occurs 

only once combined with a single instance of nuclei relations with a particular cellbody 

(Figure 3F). Cell bodies with no associated nuclei can be identified as the rows in the table 

labelled only with DC relations (21 instances, shown in Figure 3E) All the other possible 

relations (Figure 3G) not fulfilling the "nucleated cell" model (i.e, cells with multiple 

nuclei or cell bodies sharing a nucleus, thus partially overlapping cells) can also be 

specified in DM terms. Note that while model cells could also be extracted using RCC5D, 

nuclei forming TPP or NTPP relationships with the cytoplasm would not be distinguished. 

One further advantage of these approaches is that knowledge of the relations between 

image regions can be enhanced by means of conceptual neighbourhood diagrams [2-4, 6]. 

These are pre-computed graphs encoding the possible changes in a relation between 

regions when one of the regions undergoes a “minimal change” (e.g. after a morphological 

dilation). Knowledge of these relation changes helps understanding which additional 

morphological operations in the segmentation process can be applied so the expected 

image content model is better fulfilled. 

4 Conclusions 

We presented an implementation of DM for two related sets defined by means of MM 

computations. Those relations can be used to model topological cell and tissue organisation 

in histological sections (further examples on tissue architectural features have been 

suggested in [6]). While histological imagery is commonly modelled as 2D discrete space, 

the models for DM are by no means restricted to 2D space and regions can in principle be 

modelled as volumes or include an additional temporal dimension.  
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Abstract

In recent years many automated methods for detection and tracking of sub cellular
structures in live cell fluorescence microscopy have been proposed. Because dependable
ground truth from real data sets is difficult to obtain, most algorithms are tested on syn-
thetic data where the ground truth is known. Differences between real and synthetic data
sets can lead to imprecise judgement about an algorithm’s performance. In this paper
we present a method for generating realistic synthetic sequences of live cell confocal
microscopy images that simulate the image formation as wellas modelling the motion
of dynamic structures during image acquisition using validdynamic models. Sequences
generated using this framework realistically reproduces the complexities existing in real
confocal microscopy sequences.

1 Introduction

Confocal microscopy is a fluorescence microscopy techniqueused for imaging sub cellular
structures in three dimensions (3D). Its optical sectioning capability gives confocal micro-
scopes a much higher resolution along the axial (z) direction than conventional fluorescence
microscopy, as well as a slightly superior lateral (x-y) resolution [10]. High speed confo-
cal microscopy is particularly well suited for imaging intracellular traffic, such as vesicle
dynamics as part of the endocytic pathway. Such studies involve acquiring large amounts
of 3D data (tens to thousands of images) which typically contain ∼ 10 to ∼ 103 dynamic
fluorescent vesicles which appear as spot like features. Analysis of such large amounts of

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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data via manual inspection is a painstaking and subjective process which has motivated the
development of automated analysis techniques such as [5, 8]. Because the ground truth of
the trajectories of features in real images is not available, the performance of automated
detection and tracking techniques is quantitatively evaluated using synthetic data. The math-
ematical models for the dynamics of vesicles motion have been fairly well established and
are easily simulated [2, 8]. However, current image simulations used for validation are based
on simplistic assumptions about the imaging system and the sample features. For example,
most simulations use fixed-shape Gaussian distributions torepresent the particles of interest,
use either a constant background or simple background structures, and have a spatially con-
stant signal to noise ratio (SNR). In recent work [7] a frame work for generating synthetic

(a) (b)
Figure 1: (a) Orthogonal views of a single 3D confocal stack showing fluorescently tagged
vesicles. (b) The schematic of a confocal stack array.

sequences of total internal reflection fluorescence (TIRF) microscopy has been presented.
These synthetic TIRF images are very realistic because of the following advances: the im-
age formation process of a TIRF microscope is simulated; valid dynamic models for vesicle
motion are used; shape deformation of vesicles in motion is modelled; and spatio-temporal
varying background extracted from real TIRF image sequences is used. In this paper we
use the same concepts for modelling the image formation process of a confocal microscope.
In particular, the microscope image formation model presented properly incorporates mo-
tion artefacts caused by vesicle motion during image acquisition, which are seen in real
microscopy images and are not accounted for in other simulations.

2 Methods

2.1 Confocal Microscopy

Whereas conventional fluorescence microscopes illuminatethe whole sample at one time,
confocal microscopes use highly focussed laser light to locally illuminate the sample in order
to minimise the illumination volume. Any light emitted fromthe sample and back towards
the objective lens is passed through a pinhole aperture in the back focal plane of the optical
system before falling onto a photosensitive detector [10]. The purpose of the pinhole is to
limit the observation volume to the small region at the focalpoint and thus to prevent light
from out-of-focus planes from reaching the detector. This permits what is known as ‘optical
sectioning’ of a sample. It is this capability that gives confocal microscopes the advantage
over conventional epi-fluorescence microscopes; because both the illumination volume and
the observation volume are confined to the focal point of the objective lens which results in
an overall better resolution, especially in the z-direction.
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2.2 Confocal Measurement Model

The image formation process for confocal microscopy can be described mathematically by a
convolution of a function describing the object being imaged, f , with a function describing
the point spread function (PSF) of the system,h, and then distorting the image with the
appropriate noise model. In 3D live cell confocal microscopy, a 3D space is sampled through
series of parallel 2D rectangular x-y planes, at a set numberof equally spaced intervals in the
z direction. Usually, when describing the image formation of 3D microscopy systems, the
function describing the object,f , is assumed to be a static three-dimensionalf = f (x,y,z)
function with no time component [1, 11]. In this paper where we are modelling dynamic
sub-cellular motion, the image formation model needs to also consider the evolution of the
function during the time that the image is being acquired, hence f = f (x,y,z, t). The point
spread function of the objective lens,hob j(u,v), is modelled using an analytical expression
for the diffraction pattern of light through a circular pupil with a perfect aberration free lens
[3]. The point spread function (PSF) for confocal microscopesis approximately equal to
the point spread function of the objective lens squaredhcon f(u,v) =

∣∣hob j(u,v)
∣∣2, this is due

to the fact that both the illumination and observation volumes are reduced to a diffraction
limited sized spot [10].

hcon f(u,v) =
∣∣hob j(u,v)

∣∣2 =

(∣∣∣∣2
∫ 1

0
P(ρ)J0(ρv)exp(iuρ2/2)ρdρ

∣∣∣∣
2
)2

(1)

where: u = 2πNA2z/λ ; v = 2πNAr/λ ; r =
√

x2 + y2; P(ρ) is a pupil function with an
aperture radiusR, J0(.) is a first order Bessel function;ρ = r/R; NA is the numerical aperture
of the lens;λ is wavelength excitation light used. This function is isotropic in thex−y plane
and anisotropic in they− z andx− z planes giving it a characteristic ‘bobbin’ shape along
the z-axis. Typically the physical resolution of a confocalmicroscope is,rxy ≃ 200nm, andrz

= 0.6 to 2µm, depending on the physical resolution of the diffractive optics of the particular
microscope, as well as the diameter of the pin hole (which canbe varied on most systems)
[10].

Recorded images represent discretized point intensity measurements of the sample space
in digitized array form. A complete data set for a live cell imaging experiment consists of
J, 3D image stacks,I3D(x,y,z) j , j = {1,2, ..,J}. A 3D confocal image stack, consists of a
set of,N, 2D image slicesI2D(x,y)i slices corresponding to different cross sectionalzplanes
through the sample,zi , i = {1,2, ..,N}. A single 2D slice,I2D(x,y)i , is represented by a 2D
digital array of sizen by m pixels. Often, in an attempt to increase the signal to noise ratio
(SNR) of a 2D image slice, several scans of the same cross section of a sample are made
in quick succession and the average of the point intensity measurements are used for pixel
values, this is referred to as ‘slice averaging’.

Because the function,f = f (x,y,z, t), is constantly changing over time, an image of a 2D
slice formally corresponds to the summation of,ns, of four dimensional (4D) convolutions of
the function space centred atzi wherens is the number of complete scans of the laser across
the 2D cross section of the sample. The image formation modeltherefore becomes:

I2D (x,y)i |z=zi =
1
ns

ns

∑
s=1

∫ t+te

t

∫ ∫ ∫
f
(
x′,y′,z′, t

)
·h
(
x−x′,y−y′,zi −z′

)
dx′dy′dz′dt (2)

We also denote the following relevant temporal variables: the instant before the first slice of
stack, j, is acquired asT j

stack; the time taken to complete a laser scan across a 2D x-y slice as
te; the time taken to move the sample along the optical axis between adjacent image slices
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(from zi to zi+1) asts; the time taken to move the sample from thez position of the last slice
of the stack,zN, to the position of the first slice in the next image stackz1, ast f . Therefore
the instant before acquiring, slice,i, in stack j is t j

i = T j
stack+(i −1) · (te ·ns+ ts).

Figure 2: Examples of motion artefacts during image acquisition of a sub resolution vesicle on 3
consecutive time frames of a confocal microscope. For each time point thex− y image shows an
average projection of the images slices in thez-direction. (a) The vesicle of interest stays relatively
stationary during the acquisition of the image stack, therefore its appearance in thex− z, andz− y
views, is the classical ‘bobbin’ shape of the confocal pointspread function. In (b) the same vesicle
moves significantly in the y direction during the acquisition of adjacent image slices; as a result the of
the ‘bobbin’ appearance is sheared in the z-y plane. In (c) the vesicle stays relatively stationary again,
and shows a similar appearance as in (a).

2.3 Dynamic Models

Movement of vesicles within cells is either due to diffusionin the cytosol, or along micro-
tubules via motor proteins. The non-linear stochastic motion of vesicles can be simulated
using a mixture of two linear dynamic models: random walk, nearly constant velocity with
small accelerations [8]. Switching between these models resembles the tethering and dock-
ing, and linear motion of vesicles as they are trafficked within the cell [2]. The state of
particlek is defined by the vectorxk

t = [x,vx,y,vy,z,vz]
T , which describes the particles po-

sition and velocity in each dimension at timet. The particles state changes over time ac-
cording the linear Gaussian model:xk

t = Fxk
t−1 + N (0,Q), where: F = diag[Fi,Fi ,Fi ] is

the dynamic model, andN (0,Q) is a zero mean Gaussian white noise process with covari-
anceQ = diag[Qi,Qi ,Qi ], i = {1,2}, i = 1 for random walk, andi = 2 for constant velocity;
Whereq1 andq2 are constants which control the noise levels.

F1 =

(
1 0
0 0

)
, Q1 = q1

(
T2 0
0 T2

)
, F2 =

(
1 T
0 1

)
, Q2 = q2

(
T3

3
T2

2
T2

2 T

)
(3)

2.4 Image Simulation

In order to produce a sequence of simulated images first a set of the trajectories of vesicles
are generated using the two dynamic models defined above. Thetemporal sampling factor is
chosen as the smallest temporal variable of the system,te or ts, as defined above. Since the
typical slice scan speed,te, for high speed confocal microscopes is∼ 10−2 to 10−3 seconds,
and the maximum velocity of vesicles is∼ 1µms−1, we can assume that the that the sample is
approximately stationary during the time a single slice scan is performed, therefore equation
2 changes to:

I2D (x,y)i |z=zi =
1
ns

ns

∑
s=1

∫ ∫ ∫
f
(
x′,y′,z′

)
|t=t j

i +(s−1)te
·h
(
x−x′,y−y′,zi −z′

)
dx′dy′dz′ (4)
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The vesicles positions are plotted in at the time point of each slice scan in a 3D array
f (x′,y′,z′) |

t=t j
i +(s−1)te

, and then convolved as in equation2.4. f is updated with the new

particles positions for every slice scan. The trajectoriesof the simulated vesicles are confined
to the region defined by an estimated background of a cell, which has been extracted from a
real image sequence. Background structures can be estimated using the MPHD method [6].
This method is based on greyscale image reconstruction frommathematical morphology; it
identifies spot like peaks and ’cuts’ them off at the background level [6]. The result of the
convolution is added the background image to form the final simulated image.

Fluorescence microscopy images are corrupted by a mixture of Poisson and Gaussian
noise. The main source of noise is photon counting noise, andis governed by a Poisson
distributionP(·). An additional source of noise is read noise, which is an additive Gaussian
process,N (µ ,σ2), with meanµ and standard deviationσ . α > 0 is the detector gain. A
noisy image is thus represented as:

I(x,y,z, t)n = αP(I(x,y,z, t))+N (µ,σ2) (5)

3 Results

Figure 3: A simulated mage: (a) Orthogonal views of a single 3D stack ofa simulated image with a
background extracted from a real confocal image. (b) A single 2D slice from the 3D stack. (c) and (d)
demonstrate motion artefacts from 2 consecutive image stacks (x-y views are average z-projections)
(c) The highlighted vesicle is relatively stationary. (d) Shows the next time frame where the simulated
vesicle moving at∼ 1µs−1. The motion artefacts resemble those in Figure2.

A sequence of images was produced using the proposed method with the parameters
based on those from a real sequence acquired using a high-speed resonance scanner con-
focal microscope (see Figure3). The PSF was generated using Equation1 for a lens with
numerical aperture (NA) of 1.49, using an excitation wavelength of 520nm. Vesicles were
simulated as sub resolution 3D ellipses with a diameter of∼ 20nm. The lateral (x-y) and
axial (z) pixel resolution is 0.2µm. The number of z-slices,zN = 20, with ns = 2 scans per
slice. The temporal variables (in seconds):te = 1/60, ts = 1/60 andt f = 1/60. For vesicle
motion dynamics: the temporal sampling factorT = te, q1 = 0.9 andq2 = 0.7. The maxi-
mum possible vesicle velocity was set to∼ 1µs−1. Vesicles were allowed to switch between
dynamics as in [7]. The background used was extracted from a sequence of real images using
the MPHD method as in [6] using 5 frame temporal averaging.

4 Discussion

This paper has presented an accurate model for the image formation process of dynamic
confocal images. Because the state of each particle,xk

t , is known for the duration of any
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sequences, they can be used to determine the detection and tracking accuracy of automated
detection and tracking algorithms. For quantitatively evaluating the performance of a detec-
tion algorithm, metrics such as: true positive rate (TPR), false positive rate (FPR) and others
as presented in [9] can be used. For tracking accuracy the root mean squared (RMS) error
between any tracks produced by a tracking algorithm and those of the known trajectories
of each particle can be calculated. RMS can either be calculated using only the particles
position, or the state vectors directly if tracking is perfromed in state space (like in most
probabilistic algorithms). An additional/alternative similarity measure for detection/tracking
accuracy is the Jaccard similarity index [4].

The resulting simulations provide more realistic ground truth for validation of particle
detection and tracking than has been previously proposed. In future work we intend extend
the framework to model the dynamics of larger structures such as endosomes.
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Abstract

Computerized image processing has provided us with valuable tools for analyzing
histology images. However, histology images are complex, and the algorithm which is
developed for a data set may not work for a new and unseen data set. The preparation
procedure of the tissue before imaging can significantly affect the resulting image. Even
for the same staining method, factors like delayed fixation degrade tissue and may alter
the image quality. In environmental research, due to the distance between the site where
the wild animals are caught and the laboratory, there is always a delay in fixation. In this
paper we face the challenging problem of designing a method that works on data sets with
different fixation delay and strongly varying quality. Herewe suggest a segmentation
method based on the structural information of epithelium cell layer in testicular tissue.
The cell nuclei are detected using the fast radial symmetry filter. A graph is constructed
on top of the epithelial cells. Graph-cut optimization method is used to cut the links
between cells of different tubules. The algorithm is testedon five different groups of
animals. Group one is fixated immediately, four groups were left at room temperature
for 6, 18, 30 and 42 hours respectively, before fixation. The suggested algorithm gives
promising results for the whole data set.

1 Introduction

The pathologist analyses tissue slides using light microscopy to detect morphological abnor-
malities. Statistical quantification of histological aberrations requires evaluation of a large
number of slides, which is time consuming. Manual analysis is subjective and there is al-
ways a risk that pathologists vary in the assessment of a tissue due to tedious repetition of the
work. The histological slides can be digitized, which enables the use of computerized image
analysis and machine learning techniques to complement theevaluation of the pathologist.
Such computer-assisted diagnosis is receiving the attention of many researchers.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Several reports indicate that compounds found in the environment can effect male re-
production in humans, mammals, birds and fish [6]. Histopathology of testicular tissue is
regarded as a sensitive tool for detecting adverse effects caused by chemicals in male re-
production [5]. One of the first steps in computerised analysis of histological images is to
identify different structures, like cells, lumen, glands and tubules. Once these structures are
segmented, measurements of different features can be carried out to detect adverse morphol-
ogy. Segmentation will be done by using chromatic information or spatial relationship of
different components. The final image quality may vary because of the preparation proce-
dure. It is a challenging problem to propose a method that works correctly, with the same
parameters, on any data set even for the same tissue and same staining method. To compli-
cate matters more, the time period between the death of the animal and the placement of the
tissue in fixative affects the tissue [4]. This is relevant in environmental research due to the
distance between the site were the wild animals are caught and the laboratory. For practical
reasons the animal may even be frozen. This generates evaluation difficulties due to autol-
ysis and freeze damages of the tissue. Tissue which is prepared in a perfect lab condition
has a normal tubular structure, which is a lumen, surroundedby epithelial cells, however in
degraded tissue the lumen may be occupied with cells. The chromatic information may also
be affected by the delayed fixation and freezing (see figure1a and1b ).

In this paper we suggest a segmentation method that uses the structural information of
the testicular epithelium marked with GATA-4 antibody. This method can be used on any
tissue with similar structure. The spatial relationship ofthe cells has been used for epithe-
lium classification. Albertet al. use a graph theoretical method to study the morphological
characteristics of the epithelium [1]. The minimal spanning tree is computed in the three-
dimensional (3D) space of the sections with the selected centers of the nuclei as vertices.
The average length of all edges in the graph is used for discriminating different specimens.
Bilgin et al. first use k-means clustering to segment the epithelium and then the cell graph is
used for classifying brain tissue samples [2]. Gunduzet al. also construct a graph on top of
the cells and then compute the graph metrics of the cell graphs, including the degree, cluster-
ing coefficient, eccentricity and closeness for each cell todistinguish healthy from unhealthy
tissue [7]. Here we also use graphs, but as a segmentation method.

2 Methodology

The proposed algorithm first segments the cell nuclei, whichform the vertices of a graph.
A graphg(ν,ε) is defined as a set of nodes or verticesν and a set of edgesε, connecting
neighbouring nodes. The graph-cut optimisation is used to remove the links between nuclei
belonging to different tubules, which thus yields an isolated sub-graph for each tubule. By
applying morphological operators on sub-graphs we delineate the outer boundary of the
epithelium.

2.1 Cell segmentation and vertices identification

The cell nuclei are mostly radially symmetric, several methods are suggested to measure the
local symmetry in image. Kuseet al. [9] used phase symmetry suggested by Kovesi [8] for
segmenting cells, we use the fast radial symmetry filter hereto extract them [10]. If pixel
p is located on the arc of a circle then the center of the circle is at one radius distance in
the direction of the gradient. The Fast radial symmetry filter is calculated at one or more
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radii. Loyet al. first calculate the Magnitude projection imageMn and orientation projection
imageOn which have high response at potential centroids.Mn andOn in [10] are defined as

Mn(P±ve(p)) = Mn(P±ve)±||g(p)|| , (1)

On(P±ve(p)) = On(P±ve)±1 , (2)

whereg(p) is the gradient at pixelp andP±ve is a "positively/negatively affected pixel" and
is calculated using the gradient:

P±ve = P± round(
g(p)

||g(p)||n) . (3)

The radial symmetry contribution at radiusn is

Sn = M̃n(p)|Õn(p)|α ⊗An (4)

whereα is a scaling factor,An is a two-dimensional Gaussian,̃Mn andÕn are normalized
Mn andOn across different radii, and⊗ denotes the convolution. The result of the filter is
the average of the radial symmetry over different values ofn. Segmentation of the radial
symmetry yields the epithelial cell nuclei, but also other nuclei. We formed a feature vector
based on morphology of cells (size, perimeter) and statistical chromatic information (mean,
standard deviation, Skewness, minumum value and maximum value of intensity), then ap-
plied k-means clustering to cluster cells into two groups. The epithelial cells are used for
further steps.

2.2 Edge establishment

In order to establish the edgesε of our graph we need to find the neighbouring cell nuclei
centroids. One way is to use the Delaunay triangulation. TheDelaunay triangulation of a
set ofm points corresponds to the dual graph of its Voronoi diagram.The Voronoi diagram
divides the space intom polygons{P1,P2, ...Pm}, wherePa correspondes to the pointSa. A
pointc belongs to polygonPa if d(c,Sa) = minjd(c,Sj), wherej ∈ {1,2, ..m} andd(c,Sj) is
the euclidean distance betweenc andSj . Two pointsSa andSb share an edge in the Delaunay
triangulation if their corresponding polygonsPa andPb share a side in the Voronoi diagram.
Delaunay triangulation yields a graph with edges only between adjacent vertices. A sample
of such a graph is shown in figure1c.

2.3 Edge weights

As you can see in figure1c, the epithelial cells usually form a cluster around a center. The
distance between two nuclei in the same tubule is smaller than the distance between nuclei in
different tubules. We set the weight of each edge to be inversely proportional to the Euclidean
distance between the two vertices that it connects.

2.4 Graph-cut minimization

We use a graph-cut minimization method to remove undesired edges. In graph-cut method
we need to specify two special terminal nodes which are called S (source) and T (sink) that
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represent object and background labels. Edges between vertices are called n-links, and t-
links represent connections between vertices and terminals. All graph edgese∈ ε including
t-links and n-links are assigned some non-negative costwe. An s-t cut is a subset of edges
C ⊂ ε such that the terminals S and T become completely separated on the induced graph.
The cost of cut is sum of the weights of all the edges it severs which is :

|C| = ∑
e∈C

we. (5)

A minimum s-t cut, is a cut with minimal cost. Based on combinational optimization a
globally minimum s-t cut can be computed efficiently in low order polynomial time. Boykov
et al. [3] introduced a new version of the max-flow algorithm that outperformed existing
techniques for computer vision applications. We need interaction to specify the source and
the sinks of the graph.

2.5 Animals and tissue preparation

Thirty healthy, sexually mature minks were collected at theannual culling on a mink farm.
The animals were divided in five groups based on time intervalbetween euthanization and
fixation. Group one was put in fixative immediately post mortem. Four groups were left
at room temperature for 6, 18, 30 and 42 hours respectively, before fixation. Transverse
tissue slices from testis were fixed in modified Davidsons fluid for 24 hours at 4◦C and
embedded in paraffin wax. The samples were cut in 5 micrometersections and stained with
GATA-4 antibody. Digital images of the sections were taken with a Nikon Microphot-FXA
microscope using the 10x objective lens.

3 Results

Testicular tissue is composed of tubules. Tubules are formed mainly by the seminiferous
epithelium. Toxic damage will affect the cells in the epithelium and alter their morphology.
Two sample images of stained tissue of mink testicle, 0 and 30hours postmortem, are shown
in figures1a and b. As you can see in this figure, the quality of the tissue is very different,
but they both have a similar structure, and the epithelial cells of a tubule cluster together.

We applied the method outlined earlier to segment the tissuesections into individual
tubules. To improve the result, we first applied the bilateral filter. We chose a spatial-domain
standard deviation of 3 pixels and an intensity domain standard deviation of 0.2 times the
dynamic range of the image. We then applied the fast radial symmetry filter with radii 3, 4
and 5 pixels. The thresholded result gave the nuclei. As we can see in the sample images
in figure 1, there were two different cell types in the tissue. We clustered the nuclei in
two groups using k-means clustering. The feature vector used contained the mean, standard
deviation, minimum and maximum intensity within the nucleus, and the nucleus size. Next
we applied Delaunay triangulation to the epithelial nucleito create a graph. The user was
asked to add markers at the center of each tubule to be separated. The markers were grown
until they each hit 7 nuclei. These nuclei were taken as sources and sinks of the graph. The
max-flow optimisation was run and the links between different tubules were removed.

Figure1 c and d shows the graphs, overlaid on top of the images. The edges shown in
red are those which were cut. The sub graphs associated to every tubule can be used for
classification of the tubules; we can extract features basedon the morphology of the graphs
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(a) (b)

(c) (d)

Figure 1: (a) Stained thin section of mink testicular tissue, fixated immediately after eu-
thanasia. (b) Stained thin section of mink testicular tissue, fixated 30 hours postmortem. (c)
and (d) Graphs constructed with epithelial nuclei as vertices, for the images in (a) and (b),
respectively. Red edges are removed by the proposed method to separate the various tubules.

themselves, or we can use mathematical morphology operators that fill the holes enclosed by
the edges of the graph to obtain a full segmentation of the epithelium. We applied our method
on 50 images, 10 images per group. A sub-graph associated to atubule which excludes some
of the epithelial cells of the tubule, and a sub-graph which includes some of the cells from
neighboring tubules both are considered as wrongly segmented. Similarly, small cell cluster
which dose not belong to any tubule is considered as wrong segmentation. For group 1 ( zero
hour postmortem) 85% of epithelial cell layer of tubules aresegmented correctly. For groups
2, 3, 4 and 5, this number is 66%, 71%, 76%, and 72% respectively. As it was expected for
the zero hour, in which the structure of the tissue is preserved better, the error is smaller than
for the rest of the groups.

4 Conclusion

A method for segmenting the epithelial cell layer was proposed. The result of segmenta-
tion can be used to analyse the epithelium structure and establish the postmortem effect
of delayed fixation or freezing, and find robust endpoints to detect adverse effects. When
analysing material from wild animals, it is important to separate the histological changes
caused by delayed fixation postmortem from premortem pathology.
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Confocal laser scanning microscopy (CLSM) for in-vivo visualisation of skin structure
is a rapidly growing technique in dermatological research as well as clinical diagnosis and
treatment (overview [2], Melanoma [3], skin aging [4]). It provides rapid visualisation of
the inner structure of the skin in its native state, i.e. without the need for biopsies. There-
fore, CLSM is well suited for cosmetical research where the usage of invasive methods is
obviously restricted.

CLSM can be used to visualise all skin layers from strateum cornum (SC) to reticular
dermis on cellular level (resolution: x-y:0.5-1.0µm, z: 4µm). The different microstructures
of the skin induce natural variations in refractivity which is mapped to grayscale in the im-
ages (Fig. 1). The resulting image data is very noisy, which makes automatic analysis very
difficult and manual analysis is a time-consuming and error-prone task.

Even the simple and most widely used measurement — thickness of the SC — is (to our
knowledge) not automatically assessable. At most, a software presents the image data to a
trained technician who selects the top and bottom slice where corneocytes (majority of cells
in the SC, large, polygonal shaped) and no keratinocytes (majority of cells in the strateum
granolosum showing "honeycomb"-structure) are visible and the software "calculates" the
thickness (Fig. 2). The SC-thickness is an important parameter for general "skin health"
since SC is the out-most layer of the skin and the major barrier of the body against physical,

c© 2013. The copyright of this document resides with its authors.
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Figure 1: Skin layers and corresponding CLSM.
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Figure 2: For measurement of thickness of SC the user selects the first slice with visible
corneocytes (top) and the bottom slice where the first keratinocytes are visible (bottom)

chemical or biological hazards in the outer environment [1].
Further parameters interesting for cosmetical research which can be manually evaluated

from CLSM image data are:
• dermal papillae structure
• epidermal thickness
• pigmentation, Melanin Granula
• collagen structure
• morphological changes in strateum cornum

In our opinion, most of these parameters could be automatically evaluated by employing
image analysis algorithms. The automatic analysis could (hopefully) help to increase sen-
sitivity of these parameters and allow better product evaluation in cosmetical and clinical
studies.
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The eye is unique in the human body as it allows direct, non-invasive inspection of tissue 

within the ocular cavity (lens, vitreous, retina and choroid). The fundus of the human eye 

is a complex multi-layered structure, with a high level of variability according to genetic, 

ethnical, and pathological factors and the highly vascularised tissue of the retina and 

choroid frequently gives an insight on the general state of the vascular system of the rest of 

the body. 

Image formation in fundus photography is determined by the histology of the tissue and 

the wavelengths being used. Standard fundus imaging utilises red, green and blue 

channels: as each channel comprises a broad spectral band, this implies not only that useful 

information may be lost secondary to the lack of spectral detail, but also that useless 

information may obscure important signs. Traditional fundus imaging therefore frequently 

fails to yield the amount of information (both at a local and a systemic level) that is 

effectively available from the fundus. 

 

The image analysis challenge is to generate a statistical model of the healthy human fundus 

across a range of narrow band wavelengths and establish methods of regional fundus 

analysis, enabling to identify the spectral characteristics of the normal fundus. This will 

pave the way to algorithms that link spectral abnormalities to specific pathological 

conditions and eventually produce a screening and diagnostic tool that will aid clinicians in 

hospitals and the high street in their decision making process. 

 

 
   

Figure. Left: colour image of a healthy fundus; Right: Multispectral image set of the same 

fundus showing details at wavelengths 507, 525, 553, 584, 596 and 617nm. 

The transition from RGB to multispectral 
fundus imaging 
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Abstract

As a result of technological advances in cardiac computed tomography (CCT), there
is increased interest in investigating CCT’s potential capabilities. Particular interest in-
volves cardiac deformation estimation as it is useful for physicians to identify and quan-
tify potential abnormally moving segments of the myocardium. Our contribution is a
first step towards more accurate motion estimation in CCT. A major issue with motion
estimation in CCT is the fact that within the myocardium the tissue appears quite homo-
geneous and therefore is difficult to track. In order to better characterize the myocardial
tissue with CCT, we applied feature-based attribute vectors containing feature asymme-
try information for image registration. Experimental results of attribute vectors on real
clinical CCT data demonstrated reduction in registration error compare to registration
done solely on intensity or feature asymmetry information.

1 Introduction

1.1 Regional cardiac function

Heart disease continues to be a major issue and new methods for quantifying severity of
disease continue to be investigated. Currently, the most frequently used clinical measure of
myocardial function is ejection fraction. However, in large scale population trials, global
systolic ejection fraction has been recognized to lack predictive value in the subsequent
development of cardiovascular events [3]. Given the premise of functional cardiac analysis
that local/regional functional changes precede global changes, increased interest has arisen
in investigating methods to estimate regional cardiac motion/strain.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1.2 Cardiac computed tomography (CCT)

The number of CCT studies has increased dramatically as a result of improvements in tem-
poral resolution, spatial resolution, and radiation dose reduction [4]. Although cardiac de-
formation is well explored with cardiac MRI and echocardiography, currently there is no
established method to obtain this information from CCT.

1.3 Different methods for cardiac motion estimation

There are a variety of different motion estimation methods developed to quantify the defor-
mation of regional myocardial tissue in ultrasound and MRI that may be applicable to CCT.
It is possible to classify these methods into three broad categories, specifically: marker based
methods, boundary tracking methods, and dense tracking methods.

Marker based methods include both invasive markers such as sonomicrometry and non-
invasive intensity-based tagged such as those found in tagged MRI or speckle tracking. A
significant issue with invasive markers is that the marker themselves can alter myocardial
motion. Existing clinical applications of non-invasive tagging include speckle tracking in
echocardiography and tagged MRI. Currently, CCT is unable to fully replicate the methods
used in tagged MRI because of the lack of embedded tags and speckle tracking because of
the lack of speckles.

Boundary tracking methods involve edge detection and dense motion field estimation.
However, only sparse displacement estimations along the boundaries can be produced due to
the simplification of the problem to a surface model. In addition, boundary tracking meth-
ods can suffer from aperture problems making it difficult to distinguish different physical
motions without additional information. These methods also strongly depend on accurate
segmentation of the myocardium and in general perform poorly within the myocardium.

The last general category is dense tracking methods based on optical flow and non-rigid
image registration techniques. The deformation of a whole 3D volume is tracked utilizing
dense image information. Methods applying parametric basis splines produce reasonable
motion estimations [2].

Using a nonrigid image registration framework [2], this work applies feature-based at-
tribute vectors for robust correspondence between frames where the attributes vector uses
both intensity information and feature asymmetry (FA) features to reduce ambiguity in im-
age matching.

2 Methods

2.1 Feature-based attribute vectors at different scales

The attribute vector [7] is designed to be a morphological signature that minimizes the
ambiguity in image matching and correspondence detection potentially towards a more ac-
curate cardiac registration and subsequently motion estimations. If the attribute vector is rich
enough to reflect the underlying anatomy, it is able to distinguish areas within the image.

In the current work, feature-based attribute vectors are defined to contain a FA measure
a f (x,y) in addition to image intensity information, ai(x,y). A multi-resolution approach is
used, with three different scales, to generate an attribute vector a(x,y) calculated on every
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pixel (x,y) in image I(x,y) and represented by the equation,

a(x,y) = [[a f
1(x,y)a

i
1(x,y)], [a

f
2(x,y)a

i
2(x,y)], [a

f
4(x,y)a

i
4(x,y)]] (1)

where [a f
1(x,y)a

i
1(x,y)] represents fine-level attributes, [a f

2(x,y)a
i
2(x,y)] represents middle-

level represents attributes and [a f
4(x,y)a

i
4(x,y)] represent coarse-level, global features.

2.2 Feature asymmetry

While image intensity is a good attribute for CT image registration, registration can be en-
hanced by using implicit structural features in a cardiac CT image such as endocardial and
epicardial edges. Previous research suggests that local phase derived features such as FA can
perform better than intensity based metrics. Therefore, we explored this in our research [6].

The general idea of local phase methods is to employ the monogenic signal to character-
ize each pixel in terms of its local amplitude, local phase, and local orientation. Structural
information in images is principally contained in the local phase (LP). The 2D slice IS is first
convolved with a band-pass filter b(x,y) to obtain,

IB = [IB
j (x,y) = b(x,y)∗ IS

j (x,y); j = 1,2, ...n] (2)

where IB is the band-pass image, j is the slice number, n is the number of slices, and *
denotes the convolution operator. The selection of the bandpass filter b(x,y) is an important
aspect of the method, and in the proposed approach, an isotropic bandpass log-Gabor filter
is chosen [6]. The monogenic signal image IM of IS is defined as IM = [IB,h1 ∗ IB,h2 ∗ IB],
where h1 and h2 are the convolution kernels of the Riesz transforms [17] defined as,

h1(x,y) =
x

2π(x2 + y+2)3/2 (3) h2(x,y) =
y

2π(x2 + y+2)3/2 (4)

From IM , the corresponding local phase images Iϕ are obtained. With the local phase
information, the even and odd filter responses derived from the monogenic signal can be
used to compute the feature asymmetry measure, a f (x,y), as described in [5].

2.3 Registration methodology using feature attributes

Based on the non-rigid registration methods established in [2] , we formulate the motion
estimation problem as a hierarchal minimization of the energy function of images of M by
N dimensions,

E =
M

∑
x=1

N

∑
y=1

d(aT (h(x,y)),aR(x,y)) (5)

where aR(x,y) represents the attribute vector of reference image, aT (h(x,y)) represents
the corresponding points in the transformed template image and d(aT (h(x,y)),aR(x,y)) rep-
resents the sum-of-squared difference between each attribute pair in the attribute vectors
aR(x,y) and aT (h(x,y)) summed over the entire image of M by N dimensions. This energy
is minimized using a first derivative gradient descent optimization against each attribute class
(i.e. feature asymmetry followed by intensity).
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3 Results
We applied our methodology on CCT volumes obtained from a Toshiba Aquilion ONE CT
scanner. The CT data was acquired on a 320 multi-row detector to facilitate the acquisition
of isotropic volumes of an entire organ within a single rotation of the gantry. The imaging
protocol included ECG triggering, split-bolus protocol with a dual-syringe injector and an
initial bolus of contrast followed by saline, single heart-beat volumetric acquisition, detectors
width of 0.4mm, voltage of 120 kV, and current from 150-500mA. Temporal resolution was
20 volumes/frames per cardiac cycle. The spatial resolution of the original image was 512 by
512 by 320 voxels. Focusing our analysis on the heart, we analysed a single cardiac dataset
with a spatial resolution of 325 by 325 by 320 voxels examining specifically a clinically
relevant cardiac four-chamber view.

Figure 1: (a) Reference (fixed) image (b) Template (deformed) image (c) Clinically sig-
nificant points manually selected for quantification in Table 1. Difference images between
deformed template image and reference image based on (d) intensity information only (e)
FA information only (f) attribute vector composed of both FA information and intensity in-
formation.

We compare registration using intensity information alone, FA information alone, and a
combination of the two via feature-based attribute vectors. Visual inspection of the registra-
tion method is shown in Figure 1, d-f. A decrease in the difference between the deformed
target image and reference image (i.e. a better registration) can be observed as a decrease in
the visibility of the difference (i.e. a more homogeneous difference image). Note when the
target image is deformed with attribute vectors (f) that the difference image is more homo-
geneous than when intensity information alone (d) or FA information alone (e) are used.

From these difference images we can quantify the registration error. In Table 1, we quan-
tify the registration error for points located in the left ventricle (LV) wall (which are candi-
dates for cardiac strain analysis) as well as additional clinically relevant points. As seen in
Table 1, there is a general trend of lower quantified registration error [1] with feature-based
attribute vectors compared registration error obtained from using solely intensity information
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or solely FA information.

Location Intensity only FA only Attribute Vector
LV wall 3.07 2.72 1.56
LV wall 2.51 2.76 1.95
LV wall 1.22 0.81 0.65
LV wall 4.73 9.50 3.41
LV wall 2.30 2.35 2.03
LV wall 3.65 5.29 3.06
LV wall 0.36 1.06 0.48
LA wall 1.53 1.29 1.1
RV wall 1.96 5.49 1.43
RA wall 0.36 1.06 0.48
LV cavity 0.22 0.81 0.65
lung 1.31 1.95 1.25

Table 1: Quantification of error metric, intensity difference dI , of clinically relevant points.
dI is to the power of 10−2. left ventricle (LV), right atria (RA), right ventricle (RV), left atria
(LA).

Figure 2: Demonstration of utility of feature-based attribute vector towards reducing regis-
tration error (MSE) across the cardiac cycle. Line indicates registration error obtained with
feature-based attribute vectors.

In Figure 2, note how the registration errors, expressed as mean square error (MSE) [1],
from the attribute vectors is lower than the registration error observed with the use of FA
alone or image intensity alone across the cardiac cycle. Because of the number of temporal
frame, small changes are noted from frame to frame, which helps explain the small reg-
istration errors noted with using FA alone, image intensity alone and attribute vectors. In
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addition, our images were normalized for intensities from 0 to 1. Since our ultimate goal is
to be able to quantify small local deformations, decreasing these registration errors can be
considered valuable improvements.

4 Conclusion
The contribution of this work is the implementation of feature asymmetry (FA) within at-
tribute vectors (feature-based attribute vectors) for improved image registration in cardiac
computed tomography images. In our results, we can visually see an improvement in reg-
istration with the feature-based attribute vector when compared to registration using solely
intensity information or FA information. Looking at clinically significant points, we can
quantify an improvement in registration. Finally, looking across the cardiac cycle, we can
see that feature-based attribute vectors consistently showed a lower registration error com-
pared to using intensity information alone or FA information alone. Further research will
includes expansion of our attribute vectors framework to better act as morphological signa-
tures of cardiac tissues.
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Abstract

This paper presents a novel interactive segmentation formalism based on two coupled
B-Spline snake models to efficiently and simultaneously extract myocardial walls from
short-axis magnetic resonance images. The main added value of this model is interaction
as it is possible to quickly and intuitively correct the result in complex cases without
restarting the whole segmentation working flow. During this process, energies computed
from the images guide the user to the best position of the model.

1 Introduction
In order to detect myocardial walls from short-axis MR images, classical methods use image
gradient driven forces [3, 15], but these methods are known to be sensitive to noise and
to have restricted spatial extension. Thus region-based terms as region homogeneity have
been introduced more recently [4, 13] as a remedy. To make gradient-based terms more
robust, the Gradient Vector Flow (GVF) [16] obtained by diffusion of the gradient vector
field in homogeneous regions is used in [8]. In [9], it is employed for joint propagation
of endocardium and epicardium contours in a levelset framework. The Deformable Elastic
Template [6] is a finite element model that simulates heart mechanical behaviour in a linear
elasticity setting. Image forces are also computed from GVF terms at the boundaries. For
most of these methods, user interaction options are often limited to the choice of few points
on the first slice or to the manual delineation of the first contour location [14].

The core of the article is organized as follows: In Section 2, we introduce segmentation
assumptions related to myocardium detection and tracking, then the principles of our new
deformable model (geometrical constraints and energies), called dual B-spline model. Fi-
nally, we show the results provided by the dual B-spline model in Section 3, as well as the
ability to quickly correct the result in complex cases.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 Methodology
Our goal is to simultaneously extract myocardial walls with a formalism that allows interac-
tion to correct the result if an error occurs. The endocardium is the inside wall between the
myocardium and the cavity, and has a rather homogeneous gray level, except for the pillars.
The epicardium is the outer wall of the myocardium. The external regions are totally inho-
mogeneous in gray levels, and the contrast of the boundary varies in intensity and even in
sign. We thus introduce a coupled heterogeneous energy in agreement with these constraints
and a shape energy term to prevent unexpected behaviour.

2.1 Geometric Representation
Dual B-spline Snake

Introduced by Brigger and Unser [10], B-spline Snake is a compact representation that ad-
dresses several problems arising from Kass et al. Snake model [7] and B-Snake model [12].
The contour model is defined from the nodal points of a B-spline curve. This allows to in-
tuitively and directly control the curve. Moreover, it is possible to convert nodal points to
control points and vice versa by linear filtering. We use a new interactive model called dual
B-spline snake designed to model both myocardial walls. Contrary to existing automatic
methods requiring any user to guess the correct initialization to make the model converge,
our approach provides a convenient interactive way to correct the result. The two coupled
B-Spline contours Cendo and Cepi are defined from a centerline curve Ccenter at one half
thickness b as in the model of Parallel Active Contours [5]:

Cendo(t) = Ccenter(t)−b(t)n,

Cepi(t) = Ccenter(t)+b(t)n, (1)

where n is the normal of the B-Spline curve Ccenter and t its parameter.

Figure 1: Dual B-spline model: P1
i , P2

i are the nodal points of epicardium and endocardium
contours respectively, while Q1

i are the control points of epicardium contour.

Sectorization Constraint

Traditionally, the uniformity of B-spline node positions during evolution is ensured by a
reparameterization energy [10], avoiding shape singularities. For myocardium segmentation,
they could be due to pillars for instance. Given the global convexity of the expected walls,
an angular constraint is used: The nodal points are subject to lie on the American Heart
Association’s (AHA) myocardial sectorization limits usually considered by the cardiologists
[1] (Fig. 2). The forces derived from the energy terms are projected onto these directions.
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Figure 2: Dual B-spline snake model endocardial contour Cendo and epicardial contour Cepi
computed from the centerline contour Ccenter where forces Fi, deriving from the global en-
ergy E (2), are constrained to lie along the AHA sector limits.

2.2 Internal and External Energies
To improve the robustness of endocardium and epicardium segmentations, we have used
a new grayscale distance transformation to enhance myocardium and epicardium contrast
thanks to the algorithms proposed in [11].
For the evolution of the centerline curve and half width, an energy E made of the combination
of three heterogeneous terms is minimized:

E = αE1(Cendo)+βE2(Cepi)+ γE3(Cendo,Cepi),α +β + γ = 1, (2)

where α , β and γ are weighting parameters. E1(Cendo), a region-type energy term of Chan
and Vese (CV) [2], is preferred for the endocardium contour, whereas a Gradient Vector
Flow (GVF) [16], i.e. a boundary-type energy term is chosen for E2(Cepi). As epicardium
constraint is sometimes weak in the absence of gradient information, a coupling energy
term, E3(Cendo,Cepi), applied between endocardium and epicardium contours, prevents un-
expected behaviour and acts as a shape memory term.

Elastic Coupling Energy

An elastic coupling energy, E3, is used to induce a restoring force, between the two curves
(Fig. 1). As exact myocardial thickness is unknown, we make it adaptive by considering an
average thickness, i.e. energy E3 is equivalent to the variance of b values. For instance, at
nodal point i:

E3(t = ti) = (bi−
M

∑
j=1

b j

M
)2, i ∈ [1,M]. (3)

Global Energy Minimization

We describe here how to derivate global energy E with respect to the nodal points of our dual
B-spline model. For instance, at nodal point i, we get from (1) and (2):

∂E
∂Pi(t = ti)

= α
∂E1(Cendo)

∂Pi
+β

E2(Cepi)

∂Pi

= α(Id2−bi
∂nT

∂Pi
)Fendo(ti)+β (Id2 +bi

∂nT

∂Pi
)Fepi(ti), (4)
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where Fendo and Fepi are the forces deriving from the energies Eendo and Eepi respectively.
The nodal points of the centerline Ccenter are subject to a directional constraint along a sector
limit Pi = O+λici, where O is the initial point of the half line, and ci is the unit vector of the
considered direction. Then the only degree of freedom is λi and the corresponding derivative
is:

∂E
∂λi

=
∂E
∂Pi

∂Pi

∂λi
=

∂E
∂Pi

ci, (5)

meaning that the previously computed gradient vector (5) should be projected onto ci. Then
we describe how to derivate the half thickness bi at nodal point i:

∂E
∂bi(t = ti)

= α
∂E1(Cendo)

∂bi
+β

∂E2(Cepi)

∂bi
+ γ

∂E3(Cendo,Cepi)

∂bi

= α
∂E1(Cendo)

∂Cendo
.n+β

∂E2(Cepi)

∂Cepi
.n+ γ

∂E3(Cendo,Cepi)

∂bi

= [−αFendo(ti)+βFepi(ti)] .n+2γ
M−1

M
(bi−

M

∑
j=1

b j

M
). (6)

For minimization, we have used a gradient descent with constant step. First, the algo-
rithm computes the forces applied to the nodal points of the centerline curve from (4), the
new positions of the points, and then the partial derivatives to update the half-thickness using
(6). The endocardial and epicardial curves are updated with the new position of the middle
curve and the new half-thicknesses using (1).

3 Results and Discussion
To evaluate the segmentation accuracy of the dual B-spline snake, ground truth contours
are manually drawn by an expert. We use 4 datasets of 24 slices. Two types of classical
indices are computed (Tab. 1): Region superposition indices like Dice Coefficient (DI is a
similarity measure between myocardial regions) and Vinet’s criterion (VI is a measure of
the overlap between myocardial regions); and contour distance metrics like Mean Absolute
Distance (MAD gives the global correspondence between contours) and Hausdorff distance
(HD gives the maximum symmetric distance between contours).

The values of all the segmentation indices (Tab. 1(a)) are in favour of the accuracy of the
proposed method. Errors are mainly due to the GVF field that is distorted by the presence
of a strong contrast at pericardium (Fig. 3(b)). On the contrary, the lack of contrast of
myocardium (Fig. 3(a)) reduces the segmentation accuracy. Finally, high ejection fraction
may significantly reduce the left ventricular area as for the last dataset (Fig. 3(c)). This is
the interest of using the interaction capacities of the dual B-spline snake model, in the case
of complex situations where automatic segmentation fails.

One only needs to move the nodal points of the curve that are badly positionned, i.e.
attracted by a local minimum. But this is smart interaction since forces deriving from the
image energy terms act like restoring forces against user displacement: They are maximal
at the expected contour position, as illustrated in Fig. 4(a). In this case, the user makes our
model go over the local minima where it fell (Fig. 4(b)). Table 1(b) shows the errors when
user’s interactive correction is applied: For datasets 1, 2 and 4 the Haussdorf Distance values
are halved. More generally, all the indices are improved.
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(a) (b) (c)

Figure 3: Myocardial wall segmentation issues with Dual B-Spline Snake (red curves) com-
pared to expert delineation (white curves). a) dataset 1; b) dataset 2; c) dataset 4.

Table 1: Quantitative evaluation vs. ground truth provided by an expert.
(a)

Dataset DI(%) VI(%) HD(pix) MAD(pix)
1 95.4±0.2 0.14±0.09 1.23±0.90 0.25±0.16
2 97.5±0.2 0.07±0.07 1.29±0.61 0.22±0.16
3 93.5±0.2 0.3 ±0.15 1.84±0.93 0.76±0.30
4 96 ±0.2 0.2 ±0.15 2.74±1.15 0.54±0.35

(b)

Dataset DI(%) VI(%) HD(pix) MAD(pix)
1 98.9±0.2 0.03±0.02 0.68±0.55 0.03±0.05
2 99.5±0.2 0.02±0.01 0.56±0.52 0.04±0.04
3 94.2±0.2 0.27±0.09 1.67±0.73 0.69±0.21
4 98.6±0.2 0.07±0.13 1.25±1.17 0.19±0.33

(a) (b) (c) (d)

Figure 4: Displacement of nodal points for interactive contour correction: a,c) the image
force direction is the same as user’s interaction; b,d) the image force direction is opposite to
user’s interaction.

The dual B-spline snake we have proposed in this paper is adapted to myocardium seg-
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mentation, and allows simple interactive correction. As future works to improve segmenta-
tion robustness, methods will be extented to 3D and even to 4D to bring temporal coherence.
We also plan to use this model for myocardial tracking by coupling segmentation with mo-
tion estimation. For the correction step, the good results show the interest provided by any
user’s interaction. To increase efficiency of the correction, we would like to use haptic de-
vices to make 3D image restoring forces more perceptible than in a classical slice processing
software.
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Abstract

Registration is a complex computer vision issue that can be simplified with the aid
of prior knowledge. In this paper we present the application of the groupwise method
known as congealing with prostate boundaries to derive a series of transforms that can
be applied to other foci for registration. Congealing provides us with transformation
vectors for each image that we apply to known tumour boundaries in order to obtain
a probability distribution for use as prior knowledge in future work. In this way we
are able to visualise tumour locations on an mean prostate representation and provide a
‘cancer prior’ for future prostate work. The results of our initial experiment demonstrate
a reliable set of affine transforms for use with prostate MR.

1 Introduction
Prostate cancer is one of the most common cancers and treatment plans can be hampered by
issues in initial diagnosis and staging. An increasingly popular means of enhancing guided
biopsy for improved diagnosis is to utilise TRUS/MR fusion for targeting and enhanced vi-
sualisation [6]. Current methods typically depend on manual intervention, fiducial markers
and/or 3D tracking systems. We are concerned with enhancing registration and working to-
wards a fully automatic process. We have investigated groupwise methods for combining
images from multiple patients, namely congealing, which involves the simultaneous align-
ment of multiple images towards a common mean with no dependence on prior knowledge.
Prior information on probability distribution of prostate regions, including the prostate cap-
sule and known tumours can be usefully employed to both fit data and evaluate registration
methodologies is examined in the work of Ashburner et al. [1]. If a segmentation is sig-
nificantly different from the a priori distribution it is sensible to assume that the fit is poor.
The output from the congealing process used in this paper can serve as a prior for further
analysis.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) (b)
Figure 1: Prostate boundaries in MRIs of 20 different patients (a) prior to congealing (b)
after being congealed towards a common mean

2 Method
Our work uses the congealing method [7] which has been used with a wide collection of data
for non-specific alignment, including but not limited to datasets with spatial and brightness
variability. In this instance we are interested in the most common spatial alignment problem.
As we used binary images that were known to have no noise for our input, we settled on the
conventional entropy measure. But many different similarity metrics exist for all manner of
image registration tasks.

Figure 2: Each prostate in the data set was congealed towards a mean representation through
entropy minimisation. The final output was a transformation (T1..Tn) for each boundary.

The congealing process iteratively performs affine transformations on each image in a
stack, simultaneously, in an entropy minimisation effort. Congealing’s simultaneous regis-
tration towards a common mean can be superior in preventing bias when compared to those
methods which work towards a single input template. The result is a mean representation of
the object in question and the transformations T1..Tn which will convert each of the input
objects to that mean.

We performed congealing on a collection of prostate boundaries obtained from the Nor-
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Figure 3: Tumour boundaries were individually transformed using the transformation vector
(T1..Tn) derived from the appropriate prostate boundary. The images were then combined
into a single image to visualise the relative location of tumours.

folk and Norwich University Hospital. The images were each annotated by multiple experts
and detail the boundaries of the prostate capsule, central zone and tumour(s). The axial slice
most intersecting with the prostate centre in each MR volume was selected from 20 patients.
These 20 images were treated as a single stack and the congealing method performed on all
of them. The result of this process was a transformation vector for each image to reach an
appropriate best fit to the mean, which is illustrated in Figure 2.

The resulting mean image provides a reliable model derived from multiple cases that
further tools can use as a basis for boundary alignment. Those cases which do not conform
to this model may be indicative of poor data quality or highly abnormal cases. In addition,
we can expect earlier stage cancers to be constrained within the prostate capsule. As cancer
progresses we would expect to see extracapsular extension (beyond the prostate boundary)
leading to metastatic disease. Thus this mean model provides us with an ability to make
estimates for staging.

Once the congealing process was complete, a unique transformation vector was available
for each MR slice. The transformation vectors were applied individually to the ground truth
tumour boundary for that particular slice as shown in Figure 3. Figure 4 provides an example
of the transformation of tumour boundaries to fit the mean.

The final output of the method allows us to evaluate the typical and ideal distribution of
tumour pixels. This is visualised in Figure 5 which shows an overlay of prostate capsule and
tumour boundaries as heatmaps. This visualisation demonstrates the consistent location of
the prostate boundaries and the majority of cancers.

3 Results & Discussion
With the tumour boundaries transformed to the mean prostate representation we can make
some observations about the typical distribution of prostate cancer. For example, we can see
that cancerous regions are more common in certain regions of the prostate. The distribution
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(a) (b)
Figure 4: Superimposition of all tumour boundaries with mean prostate boundary. Mean
prostate boundaries are shown as white with (a) original tumour boundaries in red and (b)
transformed tumour boundaries in blue.

(a) (b)
Figure 5: Heatmaps for multiple patient cases depicting (a) congealed prostate boundaries
and (b) transformed tumour boundaries. In (a) pixel colour represents number of cases cov-
ering that region ranging from black (0) to orange (10) to white (20). In (b) the same colour
map is used but ranges from 0-4 as the tumour boundaries are sparser.

of transformed tumour boundaries, as well as the heatmap in Figure 5 (b) coincide with the
peripheral zone, which contains three quarters of the prostate’s glands and is subsequently the
most common region of tumour incidence[3]. Looking at the progression of cancer from a
pathological viewpoint, the primary focal point is the peripheral zone (80-85% of cases) [5].
Tumours extending beyond the prostatic capsule are considered more severe (as classified in
pathological tumour grading) and central zone tumours are known to be more aggressive [4].
For initial prostate cancer diagnosis, guided biopsy is usually performed following a basic
protocol to achieve even sampling, false negatives are not uncommon and repeat biopsies
are often required. Our data could be particularly beneficial in the context of repeat biopsy.
For example, at initial biopsy we could target the regions of statistically high incidence, if
negative, recommend for the average incidence areas and if negative again, then areas of
least occurrence - progressively moving from statistically likely to unlikely regions rather
than sampling across an even spread.

In summary, the information gathered could be used to assess how well a suspected
tumour region conforms to the expected distribution and thus automatically detect if regis-
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(a) (b)
Figure 6: Superimposition of all tumour boundaries with mean prostate boundary. Mean
prostate boundaries are shown as white and the congealed tumour boundaries are blue.(a)
shows the boundaries of high incidence tumour regions in yellow and (b) shows the bound-
aries of medium incidence of tumour in green.

tration or other classification processes perform within expectations. Furthermore, analysis
of conformity with the model distribution could indicate cases of meaningful abnormality.

4 Future Work & Conclusions
We executed the method on 20 cases as an initial trial; we intend to continue the work
by using the additional (30) cases in our data set as well as trialling it with data from other
sources in order to create a more comprehensive collection of prior knowledge. Visualisation
of data from a variety of cases is an interesting problem and a useful clinical tool based on a
larger data set might be in the form of a Voronoi tesselation or similar, in order to highlight
regions of significant tumour incidence.

Groupwise techniques have had little application to multi-modality imaging, we believe
improved similarity metrics would be of considerable benefit to achieving more accurate and
reliable registration. Congealing makes use of pixelwise entropy; calculating local region
entropy across a group may provided a clearer indicator of alignment in the case of greyscale
images.

Issues of scalability due to broadening parameter space for metrics beyond pairwise reg-
istration has been highlighted by Bhatia et al. [2]. Various optimisation techniques exist for
all stages of registration. For example, Wachinger and Navab [9] reported the successful
use of multivariate metrics; highlighting that metrics are application dependent. In order
to tackle the issues of scalability, they also present work on similarity measure and trans-
formation optimisation, notably using accumulated pairwise estimates (APE). There are a
number of methods that can be utilised to evaluate a group of images. One such example is
STAPLE[10] though it is tailored to evaluation of segmentation results and has dependence
on input parameters. It would of interest to investigate automatic parameter adjustment for
STAPLE. Other variations of groupwise registration employ a variety or combination of fit-
ness metrics and more complex transforms to suit data.

Groupwise registration of multi-modal [8] and 3D data[11] has been previously demon-
strated. However, our research has a focus on 2D ultrasound and 3D MR registration. We
hope to expand the groupwise methods to suit such a problematic dataset. In addition, ex-
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tension of the method to generate volumetric prior models would be of particular use with
MR data and might provide new insights into staging. We envisage that the incorporation of
superior nonrigid transformations or locally restricted rigid transformations will enable an
improved groupwise framework suited to multi-modal registration of real images with mixed
dimensionality.

Joint alignment shows promising results for the registration of prostate boundaries in
MR data. However, our approach used only affine transformations and the incorporation of
nonrigid techniques would better preserve local data more effectively. Groupwise techniques
such as congealing have been previously used for alignment of images from the same, such
as slices from a single MR volume. Our application to inter-patient data is a novel use that
our results demonstrate has applications to both multi-modal image registration and prostate
cancer staging.
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Abstract 
There is now an internationally recognised need to improve 3D verification of 

highly conformal radiotherapy treatments. This is because of the very high dose 
gradients used in modern treatment techniques, which can result in a small error in 
the spatial dose distribution leading to a serious complication. In order to gain the full 
benefits of using 3D dosimetric technologies, it is vital to use 3D evaluation methods 
and algorithms. We present in this paper a software solution that provides a 
comprehensive 3D dose evaluation and analysis. Evaluated dose distribution is 
spatially aligned with the reference distribution prior to verification analysis. The B-
spline registration algorithm has demonstrated a higher reliability in dose image 
registration than the demon algorithm. The software is applied to gel dosimetry, 
which is based on magnetic resonance imaging (MRI) as a read-out method. The 
software can also be used to compare any two dose distributions, such as two 
distributions planned using different methods of treatment planning systems, or 
different dose calculation algorithms. 

1 Introduction 
Advanced radiotherapy technologies, such as intensity-modulated radiotherapy (IMRT) 
and volumetric modulated arc therapy (VMAT), can provide considerable improvements to 
the result of radiotherapy both in terms of maximising the therapeutic effect of dose 
distribution on tumour, and minimising its damaging effect on surrounding healthy tissues 
and organs at risk (OAR). The increasing complexity of irradiation techniques has driven 
the development and adoption of 3D dosimetery methods, in order to optimise treatment 
planning and delivery systems, as well as to quality-assure their functionality. The 
adoption of 3D dosimetry methods has been increasing over the last decade [1, 5]. 
However, software applications (both freeware and commercial) that are used for dose 
evaluation and quality assurance (QA) purposes are primarily based on 2D evaluation 
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methods. These 2D evaluation methods are prone to error in evaluating the accuracy of a 
particular dose distribution, mainly because of the mismatch that can happen in selecting 
the corresponding slices from the dose distribution volumes being compared (Figure 1). 

 
Figure 1: An example for an IMRT head and neck case showing how a 
mismatch can happen in selecting corresponding slices. 

In principle, QA based on 3D verification is assumed to provide more quality 
indicators for further analysis. Also, it makes it possible to define tolerance criteria in 3D 
in order to account for setup inaccuracies of the dosimeter phantom and/or detector. In 
order to derive the full benefits of using the 3D dosimeter, it is essential to use a software 
tool that provides analysis and evaluation results based on 3D methods and techniques. In 
fact, there is no software solution that provides comprehensive 3D dose evaluation and 
analysis. In this paper, we present a software suite that covers a wide range of 3D dose 
evaluation techniques. We have particularly applied the software to gel dosimetry, based 
on magnetic resonance imaging (MRI) as a read-out method [3]. In addition to comparing 
the measured and calculated dose distributions, the software can also be used to compare 
plans produced using different methods such as commercial treatment planning system 
(TPS) or Monte Carlo (MC) algorithms. The software has been evaluated using datasets of 
different radiotherapy plans and MRI gel dosimeter scans. 

2 Materials and methods 
The software tool presented here was produced using the MATLAB® computing language 
and interactive environment (version R2011a), which provides convenient and flexible 
high-level language and advanced graphical capabilities including 3D rendering. Also, the 
C programming language was used along with OpenMP API in order to optimise the speed 
of complex computational processes. The analysis is presented in a friendly user interface, 
which allows manipulation of the settings of each type of analysis. The software accepts 
different data formats as an input for the analysis, including DICOM and Analyze 7.5. The 
tool was designed to meet the analysis requirements of MRI gel dosimetry, such as 
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calculating R2 rate data (which is proportional to the absorbed dose), and applying 
calibration data to produce absolute dose values. 

Dose distributions may have different coordinate systems. However, they are initially 
aligned using the corresponding slices at iso-centres of both volumes. This is valid based 
on the assumption that markers on the phantom were used to place it at the iso-centres of 
both radiation and read-out machines. Then the software tool automatically detects and 
calculates the global and local 3D deviation between the reference and evaluated dose 
distributions by using rigid and non-rigid volume registration techniques [2, 6, 9]. The user 
is informed about inaccuracies arising from sources of error such as misplacements of the 
dosimeter during radiation delivery or read-out stage. The user can choose whether to 
account for this deviation in the comparison calculations. Together with the 3D analysis 
methods, the software tool also provides some analysis in 2D so that the 3D evaluation 
methods can be compared to the more conventional 2D forms. 

2.1 Image registration algorithm 
The B-spline registration algorithm [6] has demonstrated a higher reliability in dose image 
registration than the demon algorithm [9]. In fact, the demon algorithm failed to register 
most of the samples. This may be due to the peculiarities of dose distributions in that they 
usually exhibit low gradient edges compared to those found in medical images of 
anatomical structures. The sum of squared differences was used as a similarity measure. 
Image registration is used in two stages of the analysis. Firstly, rigid registration is used at 
the pre-processing stage in order to globally align the evaluated distribution with the 
reference distribution. Secondly, B-spline registration is used at the analysis stage in order 
to calculate the 3D deviation at each voxel.  

2.2 Evaluation methods used 
The software provides both qualitative and quantitative analysis. The qualitative analysis 
includes various types of volume visualisation methods offered by MATLAB. The 
quantitative analysis includes the following: dose volume histograms (DVH), absolute 
dose difference, relative dose difference (either globally relative to a specific dose value or 
locally relative to the dose at each reference point), absolute spatial difference between 
each reference point and the closest point (of the same dose value) in the evaluated dataset, 
distance-to-agreement (DTA) test (whereby a spatial tolerance is used as a pass/fail 
criterion), gamma evaluation (which combines a DTA criterion with a dose difference 
criterion through a composite analysis) [4], gamma volume histograms [7], and gamma-
angle analysis (which indicates which of the DTA or dose difference criteria had more 
influenced the calculated gamma value at each reference point) [8]. 

2.3 Comparison datasets 
Three reference/evaluation 3D sample pairs were compared using the software in this 
paper. Sample A is a standard uniform intensity conformal treatment plan which was 
delivered to two MRI gel dosimeter phantoms; one was stationary during the irradiation as 
a reference distribution, and the other was moving to simulate human respiration whilst 
being irradiated at full inhalation using the respiratory gated radiotherapy technique 
(RGRT). Sample B is for an IMRT head and neck case, where the reference distribution 
was measured using MRI gel dosimetry in order to evaluate its corresponding TPS plan. 
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Sample C is for another IMRT head and neck case with an MC calculated reference plan 
and an evaluated TPS plan, wherein there was no experimental uncertainty involved. All 
the samples share the same size of 256 mm in each direction and a voxel resolution of 1 
mm, which forms cubic datasets of 2563. 

3 Results 
For the entire 2563 volume and using a PC equipped with Intel i7 processor, the average 
computation times for the rigid and non-rigid image registrations were 2 minutes and 10 
minutes, respectively. The average calculation time for the 3D gamma was less than 1.2 
seconds. The screenshot in Figure 2 shows the 3D deviation map at the 10% isodose 
surface between reference and evaluated dose distributions from sample A. This 
demonstrates the degree of deviation that was introduced by irradiating the moving 
phantom using the RGRT technique. Figure 3 shows the results computed using the 3D 
gamma evaluation method for sample A. The gamma histogram in Figure 3 shows that the 
proportion of points passing a 3% dose difference criterion and a 3mm DTA acceptance 
criterion (whereby gamma   index   ≤   1)   was 94.2% within the 80% isodose surface. The 
gamma values were rendered on a 3D visualisation of the same isodose level. The gamma 
2D maps were also displayed across the axial, sagittal and coronal slice orientations. 

 
Figure 2: A screenshot showing a 3D deviation map between the two dose 
distributions in sample A. 

For sample B an average 3D deviation of ~6mm was detected by volume registration, 
which may have been introduced by inaccurate positioning of the gel phantom in 
irradiation or read-out phases. This spatial error invalidates the entire principle of 2D 
evaluation, which is based on comparing the corresponding slices of the two volumes and 
stacking up the axial 2D results into a 2.5D volume. With the option to account for the 
spatial uncertainties selected, the proportion of points passing a 3% dose difference 
criterion and a 3mm DTA acceptance criterion for the entire dose volume were 88.23% 
and 95.71%, for the 2.5D and 3D gamma calculations, respectively. Despite the high 
gamma passing rate for the entire volume, it may not be a reliable indicator by itself for 
quality assurance in radiotherapy. As it is demonstrated in Figure 4, there is an obvious 
spatial mismatch between the two dose distributions at the 90% isodose. This suggests the 
need to further investigate gamma analysis for the points within the 90% isodose, in order 
to obtain results that are not affected by the entire volume. 
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For sample C, there was no 3D deviation detected, because both datasets are for 
calculated plans, which did not involve experimental uncertainties. For sample C, the 
proportion of points passing a 3% dose difference criterion and a 3mm DTA acceptance 
criterion were 83.44% and 98.64%, for the 2.5D and 3D gamma calculations, respectively. 

 
Figure 3: A screenshot for the analysis of Sample A, showing the results of the 
3D gamma evaluation method. Gamma histogram (left) shows the proportion 
of points for gamma values within the 80% isodose, including the points 
passing  the  3%/3mm  pass  criteria  (where  gamma  index  ≤  1). 

 
Figure 4: A screenshot for the analysis of Sample B, showing an overlay 
volume rendering for the reference and evaluated dose distributions at the 90% 
isodose surface. 

4 Discussion and Conclusions 
We present in this paper a software tool for 3D dose evaluation. In addition to 3D volume 
rendering for dose distributions being compared and analysis results, the software provides 
a catalogue of dose evaluation methods that are based on three-dimensional calculations 
and analysis. The settings of various analysis methods can be manipulated via a friendly 
graphical user interface, which allows the user to interactively examine the results of any 
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changes in processing parameters. While the main application of the software would be to 
quantify the absolute accuracy of MRI gel dosimetry for planning verification, it also can 
be used to compare any two dose distributions. Moreover, it is planned to integrate the 
algorithms needed to process data obtained using other read-out techniques (such as optical 
CT) in future. 

Without a true 3D evaluation analysis it becomes impossible to really determine and 
quantify the expected accuracy of gel dosimetry as a technique. It is anticipated that if this 
software is accepted routinely then it would become invaluable in routine QA checks. The 
analysis using the software to compare dose distributions, which ought to be identical, 
showed that the proportion of points passing the DTA and dose difference criteria is higher 
using the 3D evaluation methods than with 2.5 D analysis. This demonstrates that 
extending the search to points in the 3D space, rather than just in the 2D space, enhances 
the chance of passing the evaluation criteria. It also shows that the image registration 
functionality built into the 3D evaluation methods account for the small movements and 
setup error; therefore, they produce more reliable evaluation results than the 2D evaluation 
methods. 
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Abstract
This paper demonstrates ongoing work on an algorithm for spatially resolved lung

morphology assessment of murine lungs, which can also be applied to other 3D branch-
ing structures. The algorithm was developed with a view to application on Microfocus
Computer Assisted Tomography Data of murine pulmonary structure that has been re-
modelled due to A Disintegrin And Metalloproteinase (ADAM) 33 gene misexpression,
in order to quantify the contributions ADAM 33 misexpression makes towards asthma.

1 Introduction
Microfocus X-Ray Computed Tomography (µCT) is a technique which uses X-Rays to non-
destructively image samples in three dimensions, achieving typical spatial resolutions in the
order of 1 µm. Resulting raw data sets are large, e.g. a 2000x2000 pixel detector will produce
an unoptimized data set of ∼32GB at 32 bits dynamic range. The complexity, size and 3D
nature of the data make manual extraction and quantification difficult and time consuming,
and must consider human error. As such an automated approach, or one that minimizes the
time and error cost associated with human involvement, would be a vital tool for pulmonary
research.

There are four common methods for analysing the pulmonary branching structure: knowl-
edge based segmentation, region growing/wave propagation, centreline extraction, and math-
ematical morphology [4]. Typically, solutions in the literature involve a combination of tech-
niques, of which one of the most common is centreline extraction.

Centreline extraction produces a single-voxel wide string representing the central posi-
tions of the airways, connecting at branching points. This result reduces the complexity of

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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the structure to a more easily machine-understood format and allows the user to disassemble
the structure into individual branches or generations. The centreline encompasses the length
of branches, their orientations and the difference in angles from branches. It is typically
found through either tracing or thinning. Unlike thinning, which typically operates equally
on all parts of the structure, tracing can handle different cases (e.g. branches versus straight
sections). Tracing makes use of a technique for finding the centre of cross sections at suc-
cessive points along the structure, joining the centres to find the skeleton. Sphere growth is
a powerful tool for finding the centre of a cross section of pulmonary structure because the
shape will fit well inside any convex shape and the growth of the sphere is robust against
surface noise. Additionally it can be used to find the orientation of the structure it has been
grown in for better-informed positioning of the next cross section, and a rudimentary mea-
sure of airway radius can be obtained by taking the radius of the fully-grown sphere.

Swift et al. [5] and Carrillo et al. [1] use spheres to trace the skeleton of the pulmonary
tree, but in different ways. Swift et al. use tessellated spheres to find patches of air ‘in front’
of the tracer’s current position. This is deemed to be a ‘future point’ or next step along
the airway. If multiple patches are found, these are considered to be branches. Centreline
positioning is found using a separate step, which uses 2D ray-casting to find contours in
an oblique slice. Carrillo et al. use inflated spheres combined with connected components
analysis to find centreline positioning. An initial guess for centreline position is obtained,
and a sphere grown around the point. The first intersection between airway wall and sphere is
recorded and the sphere is grown until another intersection is recorded along the vector from
the first towards the sphere centre. The difference in sphere radii for first and last contacts
is used to move the centre point (and sphere) along the vector. Future points are detected by
extending the sphere once growth is complete and detecting connected components which
are inside the extended sphere and are left when the original sphere is subtracted. Similarly
to Swift et al., branch points are detected by finding multiple connected components.

This paper proposes a modified version of Carrillo et al. that corrects centreline position
using sphere inflation with multiple intersection sources. Instead of using connected com-
ponents analysis, it calculates future trace points using plane-fitting to find the orientation of
the airway cross-section and detects branch points using radial ray casting.

2 Methods
Wild-type mice were terminally anaesthetised and their lungs inflated with Microfil (Flow
Tech, Inc.) at a constant rate of 10µl per second to a constant total volume. Once the required
volume had been injected, the trachea was tied off and the lung removed from the chest and
placed in 4% Paraformaldehyde and stored at 4C. The next day, the lung was transferred to
a vial filled with PBS plus 6% sucrose and stored at 4C.

To keep the samples in a stable position they were transferred to 15mm Bijoux tubes
filled with a 30% solution of Lutrol F68 (BASF Chemicals) and brought to room tempera-
ture, where the F68 gel thickened. The lungs were then imaged in batch in custom 225kV
Nikon/Metris HMX ST scanner (HMX) at 115Kev and 85mA. Images were converted to 8
bit brightness range and cropped to remove surrounding void, before being filtered with a
3x3 median filter and binarised using a uniform threshold set to the highest intensity peak
in the intensity histogram. The binarised image was eroded and then dilated to remove any
small structures or noise which connected structures erroneously.

The images were processed using a tracing algorithm implemented in MATLAB, which
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Figure 1: Left: Diagram showing initial sphere inflation, and motion vectors successively
correcting the sphere centre position. Right: Diagram showing branch detection by ray cast-
ing. Rays that pass through the cylindrical model built around the ray’s origin are considered
branches.

takes a manually-entered seed point and makes informed positional jumps through the air-
ways. At each jump, the centre of the cross-section of the airway is extracted and the airway’s
orientation calculated. This information is used to find the coordinates of the next point using
equation (1).

Cn+1 =Cn + ôn(rnα) (1)

where C is the position of the tracer in the image, ô is the orientation vector, r is the radius
of the cross section of the structure found at coordinate C, using equation (3) and α is a
pre-supplied accuracy factor for speed/accuracy trade-off.

After each jump, we use a sphere-growth algorithm (equation (2)) to find the cross-
sectional centre to find the maximally enclosed sphere within the structure.

γn+1 = γn + m̂ (2)

where γ is the centre of the current sphere and γ0 =Cn from (1) and m is the direction vector
in which to move the centre point and is defined as:

m = δ − (δ · ôn)

‖ôn‖2 ôn (3)

where o is from equation (1) and δ is defined as:

δ =
n

∑
i, j,k=0

( f (r,Cn)i jk ∩Di jk)[i−Cni, j−Cn j,k−Cnk] (4)

where f (r,Cn) is a function which finds the set of points on the circumference of the sphere
with radius r and centre Cn, Di jk is the value of point (i,j,k) in the lung data set and where r
is the maximal radius of a sphere centred at (i,j,k) within the structure.

After each growth pass, we sum vectors pointing from sphere-airway intersections to-
wards the sphere’s centre to create a vector pointing away from the walls (equation (4)) for
as long as it can continue expanding. Figure 1 shows a diagram of this part of the algorithm
in action. The sphere’s motion is restricted to be along the plane normal to the previous
orientation estimate to prevent it moving through the airway. Airway orientation is found
by plane fitting to the set of structure/sphere intersections on the final inflated sphere, and
taking the normal of this plane.
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Figure 2: Left: Trace of a murine wild-type lung. Right: Close up of the primary branch
of the same trace (green) compared with the result of the binary thinning skeletonization
algorithm in the Fiji ImageJ Package (http://fiji.sc), based on [2] (dark red)

Airway branches are found by casting rays from each voxel between jump points in the
trace. The distance between the trace position and the closest intersection of ray and airway is
divided by an expected value as shown in equation (5), which is calculated from a cylindrical
model r

sin(arccos(ô·d̂)) . See figure 1 for a diagram of this process.

br =
f (γn, d̂)sin(arccos(ô · d̂))

r
(5)

where γn is defined in (2), d is the direction of the ray being cast, r is the radius of the airway
found during previous sphere inflation, f (γn, d̂) is a function that is defined in equation (6)
that finds the distance between γn and the closest airway wall point along the line defined by
direction vector d̂.

f (γn, ŷ) = min
p∈N,p>0

{
‖ŷp‖, d(γn + ŷp)≥ 1
∞, otherwise.

(6)

where d(x) is a function that finds the value of the binarised image at position x.
Any values for br which are greater than 2.5 are considered potential branch indicators.

These are sorted by br and the most likely branch traced first. Due to the number of branch
detection measurements taken it is likely that the same branch is detected multiple times at
different jump points along the trace. In order to prevent false positives, all traced data are
removed from the working image. Any branch coordinate that is in void is discarded as a
duplicate when loaded to be traced. This also has the effect of removing erroneous branches
detected due to airway curvature being mistaken as a branch (see figure 1 for an example).

3 Results
In order to prevent excessive false positives, the tracer was instructed to stop at any structure
with radius less than 8 voxels, so some airways after the 4th generation have been missed.
The traces (see figures 2 and 3) were computed in 5 hours each on a single core of an Intel
Core i7 2.8GHz CPU (Intel Corporation, California) computer with 16GB of RAM.

Validation of the algorithm was performed by tracing with multiple seed points offset
from a base, user-picked seed. The resultant traces were compared with each other by find-
ing, for each branch point in a trace, the geometrically nearest branch point in the other traces
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Figure 3: Two different wild-type lungs (grey) with their traces superimposed.

Figure 4: Top: Histogram showing range of branch point distances over 6 offset seed po-
sitions from a user-picked seed point. Bottom: Bar chart showing number of unregistered
branches for the seed points used.

(see figure 4). This system was also able to highlight branches which were found in some
systems but not in others.

4 Discussion
The skeleton produced by the algorithm is cleaner and more intuitive than the binary thin-
ning algorithm’s results. The tracer returns a single connected string of voxels denoting the
branching structure’s centre, the thinning algorithm returns a set of 3D faces and shows less
noise tolerance. With the tracer, branches are detected and stored on the fly, and during thin-
ning, branch detection must be performed as a post-process. Also it is difficult to incorporate
prior knowledge (such as branching statistics) into a thinning-based algorithm as it operates
indiscriminately across the entire dataset, whereas the tracing system possesses knowledge
of the overall branching structure as it executes. This allows applications to sacrifice a gen-
eralised algorithm for accuracy or speed or to remove the manual step.

The high values for branches missing from offset data in figure 4 is due to the offset
traces having missed the primary airway branch point. The seed point was too close to the
branch due to model limitations, and the offset exacerbated difficulties with branch detection.
As such half of the airway tree to be missed, however this can be fixed by beginning an
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additional trace in the remaining data and joining the two trees. Additionally, some missed
branches can be caused by the tracer entering areas of insufficient contrast such that noise
and airway become indistinguishable. This leads to a knot of erroneous branches which can
be seen in figures 2 and 3. It is important to note that when the same branches are found,
their positioning is very consistent, as can be seen in figure 4.

On the other hand, the thinning algorithm guarantees to skeletonize the entire structure,
including disconnected segments and difficult to analyse branches. The thinning algorithm
is also faster, taking 3 hours to compute on the same machine, however it is possible it was
multi-threaded. Finally, it requires no parameters to execute consistently, whereas the tracer
uses a seed point and an accuracy factor to be input at the beginning of execution, after which
it can be left unattended until it is finished. It is possible to automate the seed point discovery
by searching for the largest branch, however this would limit the algorithm’s application in
relation to non pulmonary systems which may have different layouts.

5 Conclusion
The clear advantages inherent to the tracer are its cleaner, single line result, which allows the
user to collect measurements consistently from each branch. The fact that the tracer builds
the tree with prior knowledge from the root of the branching structure allows the tree to be
labelled and measurements extracted and compared on a per-generation basis. Additionally,
the tracer inherently incorporates connected components and will only extract tube-shaped
structures, ignoring any connected masses.

Importantly, we demonstrate an algorithm for spatially resolved lung morphology assess-
ment of murine lungs. After further validation we will apply this algorithm to assess changes
in lung morphology due to over-expression of ADAM33. This algorithm will offer not only
a tool to assess airway remodelling in small animal models of airway inflammation and re-
modelling as well as in human lung disease, but also a tool which can measure structural
parameters in other branching structures, such as plant roots, kidney vasculature, etc.
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Abstract

Despite of an increasing use of Confocal Laser Endomicroscopy (CLE) in gastroen-
terology, an objective interpretation of this data is not established and its processing still
states a very difficult task due to the high amount of noise and motion blur shown in
these images. Nevertheless, this imaging technique offers great opportunities in terms of
immediate in vivo diagnosis of histological alterations, e.g. in the case of cancer detection.
We present a new framework for joint segmentation, detection, and analysis of vessel
structures in CLE images requiring a minimal amount of user feedback. For this purpose
we introduce a new type of non-linear derivative operators, the Oriented Differences of
Boxes (ODoB) filter.

1 Introduction & Related Work
Endomicroscopic imaging has emerged to an established tool in gastrointestinal endoscopy
and allows to visualize microscopic alterations of the mucosa during an ongoing endoscopic
examination in order to improve diagnosis and to guide therapy. Recently, the representation
of mucosal vascularization has attracted substantial scientific interest as it contributes to the
pathogenesis of different diseases, such as gastrointestinal cancer and chronic inflammation.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) CLE image of non-
pathological porcine ileum.

(b) Processed image with seg-
mented vessels (best seen in
colors).

Figure 1: (a) CLE images are likely to be cor-
rupted by pixel noise (A), blur (B), and intestinal
contents (C). (b) Desired result after processing.

Figure 2: Outline of our framework:
dashed and solid lines attached to trape-
zoids indicate optional and mandatory
user interaction, respectively.

However, the images obtained by Confocal Laser Endomicroscopy (CLE) imaging are inher-
ently corrupted by noise, blur, low contrast, and other types of disruptions, as exemplarily
shown in Fig. 3(a).

Traditionally, CLE images have to be evaluated manually, which is very time-consuming
and prone to errors. Hence, vessel segmentation in 2d as well as 3d data is in focus of
scientific research for many years, as indicated by literature surveys[2, 3]. While the majority
of these methods concentrate on retinal images with reasonable high resolutions and good
contrast, only a few approaches exist for noisy CLE images at low resolution. Contrary to us,
a remarkable group of approaches propose to use learning-based techniques. Socher et al. [6]
identifies pixels from retinal images as ridges to get an approximation of the vessel center-
lines. Xu et al. [7] classifies the output of adaptive local thresholding using SVM. The local
geometric structure around vessel pixels is measured by evaluating the corresponding structure
tensor by Zheng et al. [8]. Another approach more related to our proposal was presented by
Rouchdy et al. [5] who identifies endpoints of vessels and measures their geodesic distance in
order to find optimal connecting paths.

We propose a new framework for semi-automatic processing of CLE images. The amount
of user interaction is minimized to a few simple tasks. The remainder is structured as follows:
in Sect. 2 we describe the central steps of our approach as displayed in Fig. 2. Afterwards,
Sect. 3 gives a brief insight into the subsequent analysis of the segmentation results. In Sect. 4,
we discuss the performance of our framework to summarize and conclude in Sect. 5.

2 Preprocessing & Segmentation

2.1 Oriented DoB Filters for Local Structure Enhancement
Since the input images show a high amount of noise and are corrupted by blur—as exemplarily
shown in Fig. 1(a)—, preprocessing by non-linear bandpass filtering is mandatory before
segmenting vessel candidates. Following, will introduce Oriented Differences of Boxes
(ODoB) filters and further processing for segmentation of prospective vessel structures. In
order to suppress noise in non-vessel regions and simultaneously emphasize the vessel
structures themselves, we propose an gradient orientation-specific extension of Differences of
Boxes (DoB) filter.
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(a) (b)
Figure 3: (a) an input image and (b) the result
of traditional non-oriented DoB filtering. The
vessel structure is corrupted and noise is not
suppressed sufficiently.
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Figure 4: ODoB Filter for gradient orienta-
tion ϕ = 45◦: (a) in the spatial domain and
(b) in the frequency domain. This realizes
a complex bandpass filter.
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Figure 5: Exemplary results of ODoB-filtering image Fig. 3(a): (a) gradient orientations (color
coded; best seen in the electronical version), (b)–(d) results for increasing filter sizes. Local
vessel structure is drastically enhanced by this operation, while noise and blur is suppressed.

As presented by Rodner et al. [4], DoB filters DoBm,M(g) = 1
m ∑m

i=1 gi − 1
M ∑M

l=1 gl for
1-dimensional signals g were designed to approximate Difference of Gaussians (DoG) or
Laplacian of Gaussian (LoG) operators usually employed to determine local structure in-
formation in a fast and efficient way. Prior knowledge about the target structure can be
incorporated by choosing appropriate values for the parameters m and M representing the
widths of the outer and the inner box filters, respectively.

Regarding 2d images, this approximation of isotropic LoG operators would destroy
structure information, as can be seen in Fig. 3. Therefore, we extend the original DoB filter
to align with the local structure tensor—which turns it into a non-linear filter—and call it
Oriented Differences of Boxes (ODoB) filter. Fig. 4(a) shows a ODoB filter mask oriented
by ϕ = 45◦, while its corresponding power spectrum in frequency domain is illustrated in
Fig. 4(b). It gets evident, that this filter realize a complex bandpass filter favoring a certain
direction and simultaneously suppressing its orthogonal counterpart. Following this idea,
vessel structure will be smoothed along the local gradient direction (cf . Fig. 5(a)) and thus
emphasized by approximating the local derivatives as shown in Fig. 4 (b)–(d).

2.2 Foreground Segmentation and Vessel Detection
The ODoB-filtered images show enhanced structures with more homogeneous intensities. In
order to detect connected areas within the vessels, we apply a parameter-free Seeded Region
Growing (SRG)[1] algorithm on these images which does not require predefined homogeneity
criteria and thresholds. This returns a binary foreground-vs.-background segmentation of the
input image as displayed in Fig. 6(a). While local maxima of the ODoB output are directly
used as initial seeds, no new seeds are created while expanding the regions. Prior this step, the
user is able to determine a free-form Region of Interest (ROI) in order to exclude bogus regions
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(a) (b) (c)
Figure 6: Results of rough vessel detection: (a) segmented regions obtained by Seeded
Region Growing and (b) the corresponding morphological skeletons; (c) the resulting forest
of Minimum Spanning Trees after Split-and-Merge simplification.

(a) sampled vessel areas from input image 3(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2  4  6  8  10  12  14  16  18  20

fr
e
q

u
e
n
cy

vessel diameter in px

1
11
37
75
78

(b) distribution of vessel diameters for five distinct
frames from the same image sequence

Figure 7: Sampled vessel areas used for further statistical computations.

from onward processing as well as to adjust the amount of objects regarded as foreground, i.e.
the number of seeds for SRG. Finally, the user is able to delete wrong objects or to close gaps
between segmented areas.

After segmenting the foreground hypotheses, their morphological skeletons already give
initial approximations of the vessel axes, as depicted in 6(b). These skeletons are obtained by
morphological closing operations iteratively repeated as long as not more than the middle
line of an object remains. By computing these skeletons, the still unrelated foreground pixels
are augmented by a neighborhood structure. Since vessels can split into parts, i.e. one vessel
might dissolve into several sub-vessels, hierarchical relations can be obtained in an optimal
way by concepts taken from graph theory. Therefore, we transform the skeleton points
into weighted graph trees G = (E,V ,w) of edges E and directed vertices V with associated
weights w. These graphs are further decomposed into a forest of Minimum Spanning Trees
(MST). In order to remove degenerated trees and to reduce the number of branches along the
vessels, we further simplify the MSTs in a Split-and-Merge way. Using these tree branches,
the final vessel boundaries are obtained for each pixel located at the vessel axes, as shown
in Fig. 6(c). As a further chance for feedback, we allow the user to manually select vessel
endpoints in order to include missed structures. An optimal path through the graph is obtained
by applying Dijkstra’s algorithmemploying a cost function based on locally enhanced ODoB
filter outputs.

3 Statistical Vessel Analysis
Given the detected vessel structure, we are able to derive a couple of statistics in order
to assist the diagnosis after endomicroscopic imaging. One key characteristic of mucosal
microvascularization is the distribution of vessel diameters within the examined region. Since
vessels might intersect, overlap, or occlude each other, those vulnerable regions should not be
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Table 1: Average runtimes of in-
dividual steps in our approach.

Process Step Elapsed Time

ODoB filtering 0.491 s
Seeded Region Growing 0.028s1

Minimal Spanning Tree 1.284 s
Split-and-Merge
Simplification

0.047 s

1per iteration

Table 2: Overview of statistical parameters derived
from our final segmentation of Fig. 3(a).

Parameter Symbol Value

Total vessel length lvessel 8633µm
Total vessel area Avessel 29773µm2

Total ROI area AROI 109369µm2

Mean vessel diameter µ(dvessel) 8.2432µm
Vessel diameter std. dev. σ(dvessel) 3.4339µm
Relative vessel area AFCD = Avessel

AROI
27.222522

Number of branches NB 158
Fractal dimension D 1.827129
Lacunarity Λ 0.152779

taken into account for further analysis. To overcome this problem, we draw representative
samples from the vessel tree (cf . Fig. 7(a)) to approximate the distribution of vessel diameters.
Fig. 7(b) exemplarily shows this histogram obtained for the image given in Fig. 3(a). In order
to compare or match histograms obtained from different frames or to monitor changes over
time in delayed recordings, we calculate the intra and inter class distances as well as the
Earth Mover’s Distance (EMD) of extracted vessel diameter histograms. These provide a very
robust similarity measure. Beyond this histogram, several other statistical or form-describing
parameters are obtained, as summarized in Tab. 2.

4 Evaluation & Discussion
The proposed system was implemented in C++ using the parallelization toolbox OpenMP
and tested on a desktop computer equipped with a Intel Core-i7 CPU running at 3.4GHz and
16GB of RAM. ODoB filters for all orientations are precomputed and stored into a look-up
table after start-up. As display in Tab. 1, all processing steps are able to perform very fast.
Hence, the user interaction steps shape the bottleneck.

Since ground truth data is rarely available for our test data, we show exemplary results to
evaluate the performance of the proposed framework qualitatively. Considering the images
shown in Fig. 8 one can see that our system creates accurate segmentation from CLE images.
It benefits from the early integration of prior knowledge during ODoB-filtering. Misdetections
can be strained off by further plausibility considerations.

5 Summary & Outlook
We presented a framework to process, segment, and analyze CLE images of mucosal vascular-
isation with minimal user interaction. For this purpose, we introduced Oriented Differences
of Boxes filters as combined non-linear smoothing and derivation operators to simultaneously
suppress noise and enhance local structure. Further processing steps include Seeded Region
Growing for foreground segmentation, morphological skeletonization, construction of Min-
imum Spanning Trees, and Split-and-Merge simplification. In a preliminary clinical study
it was shown that our approach provides excellent results and performs in real-time. The
statistical parameters we obtained were successfully verified by experts. Moreover, we are
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Figure 8: Exemplary results of our approach. Odd columns: original porcine ileum CLE
images, even columns: segmented vessel structure (red) and obtained trees (green).

currently evaluating the applicability of this algorithm for the evaluation of other imaging
modalities in gastroenterology and cardiology, e.g. images obtained by endoscopic retrograde
cholangiopancreaticography and coronary angiography, respectively.
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Abstract

The problem of automatic 3D segmentation of vertebral discs in CT datasets is con-
sidered. The difficulty with the vertebral disc is that, opposite to MRI, it has low contrast
in CT and is usually indistinguishable from the surrounding soft tissue. On the other
hand, parameters measured in this volume of interest (VOI) may be of interest as addi-
tional fracture risk predictors for osteoporotic patients. Also, finite element analysis of
the vertebral column can be done more accurately when vertebral discs are included.

Two segmented VOIs are created between each pair of vertebrae: a core VOI (ap-
proximates nucleus pulposus) and an extended one (corresponds to annulus fibrosus)
which have different structural and material properties. The definition of segmented disc
volumes is based on the shape of two neighbouring vertebrae only and allows for simple
and robust implementation which was validated in a set of CT images of whole spine of
a cadaver study including 27 patients with 135 analysable discs. As a side effect of the
segmentation method, simple detection of vertebral endplates is possible.

1 Introduction
Osteoporosis is a bone disease characterized by low bone mass and microstructural deterio-
ration leading to an increased risk of fracture. Its most severe outcome is hip fracture which
is associated with a 20% mortality in the first year after fracture [3]. Heavy economical
burden associated with the treatment of the severe consequences of fractures stimulates re-
search aimed at the prevention of osteoporosis, which is primarily a disease of the elderly
population.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Main locations used to diagnose osteoporosis are the spine and the proximal femur. Dual
X-ray absorptiometry (DXA) is the standard imaging modality to measure bone mineral
density at these sites. As DXA is a projectional technique, only an areal bone mineral density
(aBMD) can be obtained. Nevertheless, aBMD is a predictor for further fractures. However,
the additional dimension in the volumetric bone density as measured in quantitative CT
(QCT) allows for more detailed analysis of density distribution in bones and in the spine
shows better fracture prediction [5].

Another potential advantage of QCT is the availability of 3D bone geometry. Osteo-
porotic fracture associated changes in vertebral shape can be clearly seen even in 2D. So far
in the field of osteoporosis one aspect of the volumetric vertebral geometry is unaddressed,
however: the shape of vertebral discs. The discs are known to undergo significant defor-
mations in osteoporotic patients [1]. Unfortunately, they are ‘invisible’ in QCT: one cannot
distinguish the discs from the surrounding soft tissue (see Figure 1 a&b). What one can do
instead is to define an intervertebral disc space (IDS) which coincides approximately with the
disc itself. One such definition is proposed here and is used to segment the core and extended
IDS volumes of interest (VOI) which are supposed to approximate the nucleus pulposus and
annulus fibrosus of the vertebral disc, respectively.

From the medical application point of view, distinguishing between these two compart-
ments may be necessary for building realistic finite element models of the vertebral column
since they possess different mechanical properties. We will call the union of core and ex-
tended IDS the complete IDS or just IDS in the remaining text.

Summarizing, the purpose of the paper is to develop an algorithm for robust automatic
segmentation of IDS in 3D CT images of lumbar and thoracic spine.

2 Materials and Methods

2.1 QCT Datasets
27 human cadavers aged 65-90 were used for the study. All acquisitions were made on a
Philips MX8000 scanner with the following parameters: 120kV, 100 mAs, slice thickness
1.3 mm, field of view 15–16 cm. Scan ranged included vertebrae from T6 to L4 with adjacent
endplates of T5 and L5. The majority of patients had osteoporosis and a few of fractured
vertebrae. Fractured or other severely degenerated vertebrae were not used in the analysis so
that adjacent IDS were not segmented as well (see Figure 1 (c)).

2.2 Segmentation method
As a prerequisite for IDS segmentation, the vertebral bodies superior and inferior to each
disc must be segmented. This was done using the semi-automatic segmentation and analysis
approach of [2], implemented in the Medical Image Analysis Framework (MIAF), appli-
cation MIAF-Spine, which also provides a segmentation of the inner, trabecular VOI. See
Figure 1 (c) for an example of the segmented vertebral column.

We define IDS in CT images as a part of an image space bounded by two adjacent ver-
tebrae and a ‘lateral’ surface connecting their most proximate points. The exact meaning of
the definition will become clear from single steps detailed below.

First, we use the trabecular (inner) VOIs of two adjacent vertebrae to find the core IDS
part. For this we apply morphological closing to these VOIs with a spherical structuring
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(a) (b) (c)
Figure 1: (a and b): Illustration of the different appearance of vertebral discs in two modali-
ties: a CT slice on the left and MR one in the centre. One can clearly distinguish the borders
of individual discs in MR, but in CT the discs are indistinguishable from surrounding soft
tissue. (c): Example of a whole spine scan with segmentation of unfractured vertebrae (outer,
periosteal volumes in red; inner, trabecular compartment in blue).

Figure 2: Example of core IDS segmentation on (left to right): sagittal slice of a lumbar
vertebral compartment, sagittal slice of a thoracic compartment, 3D view of T12–L2.

element of large radius (10 mm), so that the two trabecular VOIs and a part of the space
between them unite into one segment. The core IDS is then obtained by subtracting (in
the sense of set theory) periosteal (outer) segmentation masks of the two vertebrae from the
obtained segment. Using outer segments as protective masks removes all voxels from the
lateral surface of the trabecular compartments and limits the result to the space between the
endplates. See Figure 2 for an example of core IDS.

The second step of the segmentation algorithm expands the core VOI into the complete
IDS according to our definition. To find the lateral surface of the complete IDS we search
shortest lines connecting two adjacent vertebral bodies. However, the distance between ante-
rior and posterior parts of the two vertebral bodies may significantly vary due to the curvature
of the vertebral column. That is why we search the shortest line segment in separate sectors
dividing the cylinder V that encompasses the IDS (see Figure 3). Each such line possesses
the obvious property: the sum of distances to the vertebral bodies for each point on the line
is equal to the line length, which is minimal by definition. This simple observation gives us
practical way to finding the shortest lines.

For this we compute two distance maps, for each of the two vertebral bodies, i.e., in
every voxel of a cylinder V we compute the shortest distance to the first and to the second
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Lateral 
vertebral  
surface 

Endplate 

Figure 3: Left: schematic representation of the cylinder V surrounding the IDS; right: its
partitioning into sectors. The radius and the height of V is equal to the distance from the
centre of mass of the underlying vertebra L j to the corresponding point in the spinal canal
S j, which is automatically computed in MIAF-Spine for the whole vertebrae after user sets
one seed point in the canal [2]. This adaptation of the size of V on the size of the vertebra is
done solely with the purpose to minimize the run-time. Using a cylinder of the large fixed
radius would produce identical results.

vertebra. For simplicity let us assume that the distance maps are continuous. In every sector
we look for points with the smallest sum of values from the two distance maps. Collecting
such lines in every sector we build a ‘fence’ around the core IDS. The lines are locally (in
the corresponding sector) shortest lines connecting the two vertebrae. There were 72 sectors
used in our implementation, with the angle of 5◦ for each sector. In the discrete case, we
search points having the minimal sum of two distances plus a certain small number, half of
the voxel dimension.

The final step that remains to obtain the complete IDS is to apply morphological closing
to the ‘fence’ and core IDS in order to fill in the ‘holes in the fence’. The optimal radius of the
structuring element can be easily found as the maximal distance between two points from
two adjacent sectors of the cylinder V : structuring element must fit the maximal possible
‘hole in the fence’.

Finally, with the segmentation of two vertebral bodies and IDS in between we imme-
diately get the surface of the endplates. Namely, the endplate of a vertebra contains all its
surface points that neighbour the adjacent IDS or vertebral body (because sometimes there
is no gap between two vertebrae).

3 Results
We have tested the proposed segmentation method in 27 QCT spine datasets with a total of
180 unfractured vertebrae and 135 analysable IDS. Segmentation of all 135 IDS was suc-
cessful which means that all segmentations conformed to the above stated definition of IDS.
The segmentation runs completely automatically. It requires segmented vertebral bodies as
input which are provided by the semi-automatic approach implemented in MIAF. See Figure
4 for an example of IDS segmentation and Figure 5 for an illustration of segmented end-
plates. These results were evaluated by an expert reader who has found them accurate in all
cases except for 5 IDS where the segmented volumes were a little bit too small. A segmented
IDS was considered accurate if it occupied exactly the space between edges of the endplates.
Presence of osteophytes near the edges in those 5 IDS made them boundary points of the
IDS so that the true IDS size was underestimated.
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Figure 4: Example of IDS segmentation in three multiplanar reformation slices: axial, sagit-
tal, and coronal. Core IDS and surrounding extended IDS volumes are shown in purple and
green, respectively.

Figure 5: Example of segmentation endplates in three multiplanar reformation slices: axial,
sagittal, and coronal. Additionally to endplates, the periosteal, trabecular, and IDS bounding
surfaces are shown.

4 Discussion
In the current manuscript, we have developed a new automated and robust segmentation
of the intervertebral disc space in CT. The first results showed, at least qualitatively, the
suitability of the method. Sometimes, our definition seems to underestimate the width of
the vertebral discs due to specific variations of the shape of endplates. However, the core
IDS segmentation is independent of endplates and its size is very close to that of the whole
IDS volume so that produced error is limited to a small range. Also importantly, the seg-
mentation of endplates is readily available from IDS segmentations, an otherwise complex
segmentation problem. Of course, the quantitative estimation of the accuracy shall be done
next. For this, a spine phantom like European Spine Phantom can probably be used. A
more realistic approach would involve segmentation of vertebral discs in MR images of the
same patients and their comparison with results from CT, although it is not obvious how to
compare vertebral discs with IDS which are different objects. Next, inter-operator precision
will be established. Note however, that the segmentation of IDS itself is completely auto-
matic and depends on segmentation of adjacent vertebral bodies only, which is known to
be rather independent from the operator. Specifically, the proposed algorithm is essentially
independent of any parameters. There are few internal parameters; however, they may be
significantly varied without affecting the results. Thus, the size of the structuring element
for core IDS is chosen to fit the largest possible IDS height. Larger elements produce almost
the same results at the price of the higher computational costs though. Similarly, number
of sectors in the partitioning of the cylinder for the extended IDS was chosen large enough
to have fine-grained lateral IDS surface so that increasing the number even further would
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make only minimal changes (less than the sector width). Summarizing, the accuracy of the
algorithm cannot be easily quantified; but the precision error is kept minimal which is often
more important, e.g., in longitudinal studies.

Our simple definition of the ‘lateral’ surface of the complete IDS is based on the obser-
vation that endplates of vertebrae are always concave so that distance between points on the
ridges of two adjacent endplates is shorter than distance between any two points locating on
the inner part of the endplates, even though the endplates may lie with an appreciable angle
due to curvature of the vertebral column.

To the best of our knowledge no publications exist for the problem of automatic verte-
bral disc segmentation in CT, at least in the clinical context of osteoporosis. There are few
articles, however, which deal with the estimation of the height of intervertebral disc spaces.
One example is [4], the approach implemented therein can be modified to obtain the seg-
mentation of IDS too. The computation of IDS height in [4] is based on the segmentation
of endplates using a level-set approach: a level-set contour grows from a seed point on an
endplate of the segmented vertebral body with the velocity diminishing on points with high
curvedness. Effectively, it would stop on the ‘ridgeline’ unless stopped before by patho-
logical structures. In contrast, our proposed method normally connects the two ridgelines
of neighbouring vertebrae leading to essentially the same results but with a simpler tech-
nique. Moreover, segmentation of the core IDS ensures that the results are not affected by
any surface irregularities in the middle of the endplates.

The developed segmentation algorithm will be augmented by the calculation of geomet-
rical parameters of IDS and endplates. These parameters will in turn be assessed for their
contribution into the fracture risk prediction: whether they can enhance the standard pre-
diction statistics involving vertebral BMD. Another planned application is the finite element
analysis of a range of the vertebral column using segmentation and material properties of
vertebral bodies and vertebral discs.
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Abstract

The estimation of the location of the nipple in mammographic images forms an im-
portant step as a pre-processing stage, which is used as a landmark for registration. In
addition, the location of the nipple could be used to divide mammographic images into
regions which can be used by CAD systems and is linked to the visual quadrant as-
sessment. We describe a novel approach to the detection the nipple in mammographic
images. The developed approach incorporates the identification of the fatty region at
the breast-background boundary and local curvature modelling of the detected region.
The evaluation of the developed approach, based on 294 mammograms from the MIAS
database, indicated that for about half the cases the nipple was detected within 5mm of
the ground truth, while around 85% was within 15mm. These results are comparable
with state of the art methods.

1 Introduction
Mammographic image analysis plays an important role in the early detection of breast cancer
which is one of the leading causes of cancer, with studies indicating that 1.38 million women
were diagnosed with the disease in 2008, accounting for nearly a quarter of all cancer cases
worldwide [5]. Although incidence statistics remain high, mortality rates for breast cancer
are dropping, thanks in part to improved early detection.

Numerous methods exist to help to automatically analyse mammographic images and so
aid in the improvement of early detection rates. Often analysis is performed on a large vol-
ume of images taken under different physical imaging conditions and along with differences
in breast anatomy between cases can lead to large variation in appearance. Registration is
often used to minimise this variation and the location of the nipple can be used as a landmark
for this registration process [4]. Further to this, the nipple position along with the pectoral
muscle location can be used to split the mammogram into quadrants. This quadrant based
analysis can be used by CAD systems and is linked to visual quadrant assessment.

There are various approaches in the literature to automatic nipple detection in mammo-
grams. The earliest method estimated the nipple position by combining information on the
maximum height of the breast border, maximum gradient, and maximum second derivative

c© 2013. The copyright of this document resides with its authors.
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of gray-levels [9]. Other methods include those that seek to make use of the Radon transform
[1, 8], genetic algorithms [7], or multi-step texture and rule based analysis [11] to identify
the location of the nipple. The most recent state of the art method uses a simple heuristic to
estimate the location of the nipple [6].

The proposed method locates the nipple by analysing the local curvature of the breast-
background interface as found by using a fuzzy c-means clustering approach. This novel
method is able to identify nipple location with an average distance from ground truth being
estimated as 8.9mm which is comparable with the current state of the art.

The remainder of the paper is structured as follows. In Section 2, the proposed method-
ology for nipple location estimation based on local curvature analysis is presented. Section
3 presents the results of the proposed methodology using the MIAS database. Finally, con-
clusions are drawn in Section 4.

2 Methodology
The input images to the methodology described below are mammographic images with the
breast boundary and pectoral line removed using the algorithm described in [3]. The pectoral
line is estimated from the boundary segmentation. The proposed methodology for nipple
detection uses five main steps to extract the estimated nipple position. The method is based
on the intuition that the contours of the boundary of the breast within a restricted region of
interest will reveal the position of the nipple. By modelling the local curvature of the breast
boundary within a fixed window, the nipple location can be estimated.

2.1 Graylevel Segmentation
The first step is to cluster the input image using the fuzzy c-means algorithm [2] from which
the boundary clusters can be determined. The fuzzy c-means algorithm is a fuzzification
of the classic k-means algorithm that seeks to find a partitioning of the dataset by iteratively
partitioning the dataset based on each data points distance to a set of k-centroids. Specifically,
k-means seeks to minimise the squared error function

Ψ(Y) =
k

∑
j=1

t

∑
i=1
‖ yi− c j ‖2

2 (1)

where Y is the set of all data points, yi is the i-th data point of Y, and c j is the j-th cluster cen-
tre. Fuzzy c-means adapts this clustering by allowing points to have a degree of membership
to each cluster centre such that points on the edge of a cluster will belong to that cluster to a
lesser degree than those nearer the centre of the cluster. Specifically, fuzzy c-means changes
the computation of the centroid of each cluster to allow for degree of membership. In this ex-
periment, k = 9 clusters are used based on trial experiments and previously published results
[2].

2.2 Breast-Boundary Region Segmentation
The clusters corresponding to the boundary of the breast will contain the information re-
quired to localise the nipple position. As such, the second step is concerned with identifying
those outermost clusters. Since the pectoral line is given, or in the case of craniocaudal mam-
mograms the vertical line corresponding to the edge of the image by the thoracic wall, the
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clusters are sorted by maximum distance to the pectoral or thoracic line. The three clusters
furthest away from the thorax are taken to be the boundary clusters.

2.3 Region of Interest Identification
Once the breast boundary has been identified, a region of interest is defined within which
the nipple is localised. This region of interest is found by calculating the distance between
all points of the furthest cluster (as found in Step 2) and the pectoral line. Connecting the
furtherst point to the pectoral line gives rise to a line perpendicular to the pectoral. Now,
from this perpendicular line a subset of the final three boundary clusters is taken within the
range [−α,α], with α = 30◦ as shown in Figure 1 (b). All remaining operations will be
performed on the cluster regions that fall within this region of interest.

2.4 Morphological Filtering
The three cluster contours found using Steps 2 and 3 are combined into a single contour
within which the nipple can be localised by using morphological processing. The first step
is to use morphological dilation with a disk structured element of size 21×21 to ensure that
the three contours are combined into one (this can be checked by ensuring that the image
has only a single connected component). This dilated region is then thinned to a line using
morphological thinning. This step can be conceptually thought of as taking the average of
the three cluster contours.

2.5 Nipple Localisation using Curvature Analysis
The final step is to search through the region identified in Step 4 to locate the nipple. This
is done by initially fitting a circle through the curve created by the contour pixels. These

(a) (b) (c)

Figure 1: Figures showing the various steps of the algorithm. (a) Shows the results of per-
forming fuzzy c-means clustering on an input mammogram. The clusters along the breast-
background interface are used to identify the nipple location. (b) The nipple is searched for
within a local region of interest. (c) The result of performing morphological filtering on a
local region of the cluster contours on the breast-background interface.
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(a) (b) (c) (d)

Figure 2: Results of performing the proposed nipple localisation method on four cases from
the MIAS database. A circle indicates the estimated position of the nipple and a cross is the
ground truth position. (a-c) show how the proposed method can perform well at identifying
the nipple position. (d) shows a failure case where the nipple has not been correctly located.

pixels can be thought to correspond to a arc of a large circle, so a circle is fitted through
these points. The point on the breast region contour (found using the previous step) that has
the largest distance from the centre point of the circle is then taken to be the nipple location.

3 Results
A subset of 294 images from the MIAS database [10] are used in this work for experimen-
tation. Images where the nipple fall outside of the image region (as is the case for some
mammograms of large breasts) are excluded from this study. The proposed methodology
was programmed in the MATLAB 2011 programming environment running on a Dell Opti-
plex 755 with 4GB RAM.

3.1 Qualitative Results
Figure 2 shows results of the proposed method on four cases, three of which show the method
performing well (a-c) and one showing a case where the nipple is not identified correctly (d).
In the successful cases the estimated nipple location (shown with a circle) closely matches
that of the ground truth (shown with a cross). The failure case, shown in Figure 2 (d), occurs
because the pectoral region was not correctly identified. As such, the nipple falls outside of
the region of interest and so a phantom nipple location is found. This identifies one of the
drawbacks of the proposed technique, if the pectoral region is not correctly identified then
the nipple may not be correctly located.

3.2 Quantitative Results
To assess the quantitative performance of the proposed approach to nipple localisation, the
estimated nipple positions are compared against ground truth positions. The Euclidean dis-
tance between the estimated and ground truth positions then gives rise to a measure of accu-
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Distance % Accuracy Num. Images

0 to 5 mm 49.7% 146
5 to 10 mm 25.1% 74
10 to 15 mm 9.9% 29
15 to 20 mm 3.4% 10
20 to 25 mm 4.4% 13
more than 25 mm 7.5% 22

Table 1: Table of results of the distributions of images falling within specific distance thresh-
olds. In the majority of cases the proposed method is able to detect the nipple within 10mm
of the ground truth.

racy. To assess the accuracy of the proposed approach, the distances were sorted into 5mm
bins such that each bin represents the percentage of images within the database where the
accuracy of the proposed nipple location method falls within the given range.

The results are summarised in Table 1. The majority of nipples can be located within
10mm of the ground truth with accuracy improving such that around 85% can be estimated
within the 15mm range and around 92% can be estimated within the 25mm range. Compared
with the most recent state of the art method [6] the proposed approach is able to achieve a
higher accuracy both overall and within the smaller ranges. The method in [6] achieves an
accuracy of 80% within the 15mm range and only 30.4% are estimated correctly within the
5mm range.
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Figure 3: Distribution of the esti-
mated nipple position relative to the
ground truth.

The proposed approach is, on average, able to
detect the nipple position within 8.9mm ±11mm of
the ground truth. This is an improvement over the
method described in [6] where on average the nipple
is estimated within 11.03mm ±12.8mm.

Figure 3 shows a 2-dimensional histogram of es-
timated nipple positions with relation to the ground
truth position. The distribution of estimated nipple
positions is generally Gaussian with a tendency to
under estimate the position along the horizontal axis.
That is, the proposed approach will estimate the nip-
ple as being closer to the chest wall than it actu-
ally is. The outliers in Figure 3 are generally due
to the pectoral line being incorrectly estimated. If
the pectoral line is incorrectly estimated then the lo-
cal window within which the boundary curvature is
estimated may not contain the nipple. As such, the
nipple will be incorrectly located.

4 Conclusions
This paper has presented a novel approach to nipple localisation on digital mammograms
using local curvature analysis. The method utilises the contour of the clustered breast-
background interface to identify the location of the nipple. Experiments on the MIAS
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database show that the proposed method is able to estimate the nipple within 8.9mm of
the ground truth and around 85% of the cases can be estimated within 15mm of the ground
truth.

One drawback of the proposed approach is its dependency on the accurate segmentation
and identification of the pectoral line. If the pectoral line is incorrectly estimated then the
local region within which the nipple is searched for may not contain the nipple. However,
in the cases where the pectoral region is correctly identified, the proposed method is able to
accurately identify the nipple location. Further experimentation on different databases could
further reveal the effectiveness of the proposed approach. As well as this, using the estimated
nipple positions as landmarks for registration of mammograms will help to assess how well
the proposed method works as a pre-processing step to registration.
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Abstract

The diagnosis of digitized tissue specimen can be improved by the computerized
image analysis method. In this paper, we present a method of automatically detecting
the gland structures in H-DAB stained images of colon cancer. This is a robust method
which detect the glands by utilizing the texture information and morphological character-
istics. We also introduce another visual feature based regressor to verify if the predicted
gland is true or not. Experiments on a publicly available dataset show that our approach
outperforms the state-of-the-art.

1 Introduction
Histopathology is a study of the expression of disease through the microscopic examination
on a stained tissue specimen or biopsy by pathologist. Gland is an important structure in
the specimen which contains essential information in the disease detection especially in the
cancer detection. The diagnosis of the specimen is mainly to explore the changes of gland
architecture and the distribution of cancerous nuclei in gland.

Most of the previous papers segment gland in Hematoxylin and Eosin (H&E) stained
image. In H&E stained image, the components of gland are colored with distinguishable
colors, and the stroma which is surrounding the gland are colored differently from the others.
Several papers [4, 5] consider the color to be the distinctive cue for segmenting glands.
Unfortunately, this is not suitable for the Hematoxylin-Diaminobenzidine H-DAB stained
tissue image, as it only colors the nuclei into two classes, the cancerous nuclei and the normal
nuclei. Therefore, the previous color dependant gland detection methods might not work on
this kind of stained images.

Accordingly, texture or feature based methods are more flexible to be applied on different
kinds of color stained tissue images. These methods [1, 2, 7] directly performed on the

c© 2013. The copyright of this document resides with its authors.
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173



2 JIE et al.: MIUA AUTHOR GUIDELINES

(a) (b) (c)

Figure 1: The examples of our data set. (a) is a sample of glands which have artifact vacant
regions on the boundary; (b) is a sample of glands which have colored luminal regions; (c)
is a sample of glands which have different colored nuclei.

grey-scale image by using the texture and feature information of gland structure. [7] utilized
features of gland boundary to detect the gland by detecting the large vacant areas inside it. [1]
used the textures of stroma, luminal and nuclei along with a clustering method to locate the
glands. [2] segmented gland by using a feature based object-graph method.

These studies present good results on the detection of regular gland structures with large
luminal regions and tight nuclei boundaries. However, many glands do not satisfy these
properties, and many problems arise in the preparation of viewed specimen which may yield
the following three challenges in H-DAB image. Firstly, the artifact vacant regions may ap-
pear on the boundary of glands or the stroma areas, and it is difficult to distinguish these
artifact regions from lumen. Secondly, the color may flood to the inner regions of gland
from surrounded nuclei, making it a challenging task to detect those inconstant colored lu-
men. Thirdly, there may exist a large intensity variation between blue colored nuclei and
brown colored nuclei, and the nuclei who have lighter pixels may be miss detected. These
challenges are illustrated in Fig. 1.

In this paper, we propose a novel texture based approach to segment gland structures
in H-DAB stained images which can tackle the challenges mentioned above. Our approach
performs on the gray scale image, thus is also applicable for the kind of H&E stained images.
We proposed novel methods to extract the potential luminal regions and the enclosed nuclei
chain. The gland are then formed by growing each luminal region to reach its relative nuclei
boundary. Finally, a support vector regressor is utilized to judge whether the proposed gland
is true or not. Experiments on a publicly available dataset indicating that our approach
outperforms the state-of-the-art.

2 Method
Lumen is the central region of a gland which has been demonstrated to be useful for locating
glands in many previous papers [1, 2, 7]. Thus, we proposed the following three steps to
detect the gland in H-DAB stained images. Firstly, we find the possible luminal regions.
Secondly, each nucleus is assigned to its correlated luminal regions while scattered luminal
regions are merged and bounding boxes are fitted. Thirdly, each of these bounding boxes is
predicted as gland or non-gland by a Support Vector Regressor [3].

2.1 Luminal Regions Extraction
Just as we mentioned before, one of the challenges in gland detection is the inconstant lumi-
nal color. Thus it is better to consider morphological information rather than color informa-
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Figure 2: Candidate luminal regions extraction on H-DAB images. (a) original sample im-
ages; (b) the 3D surface plot of (a); (c) the 3D surface plot of Gaussian blur applied on
(a); (d) the 3D surface plot of (e); (e) the result of Gaussian blur followed by an open-by-
reconstruction applied on (a); (f) variance feature space of (e), to make it visible, the pixels
who have non-zero variance values are enhanced; (g) binary image after a simple threshold
applied on (f), red pixels are true luminal regions and black pixels are false luminal regions.

tion to detect the luminal regions. Morphologically, the nuclei distribute like a closed chain,
and lumen is the regions inside this chain. The detection of lumen is then equivalent to de-
tecting the closed nuclei chain. However, many glands may have unclosed nuclei chain due
to the sectioning orientation which causes the artifact vacant areas at the boundary of gland
and aggregates the challenges of gland detection. Thus, we plan to extract luminal regions
from a new feature space instead of closing the unclosed nuclei chain.

As shown in Fig. 2(b)(c), visually, the intensity of pixels inside the gland is much higher
than the surrounded nuclei and appears like a hill, while the boundary pixels surrounding
the gland appears like a valley and the pixels in the stroma appear like ridges. The valley
occurs between the hill and the ridges, and exhibits like a sharp edge. This is a distinct
texture of glands. [1] utilized this sharp edge texture to extract nuclei regions. By combining
this texture with another feature extractor, it can enhance the sharp edge and close the nuclei
chain to some extent. However, it is hard to close the boundary with large artifact vacant
areas and may miss detect small glands. From another point of view, the sharp edge pixels
at the boundary of glands have larger variations than the others. Based on this phenomenon,
we assume that the luminal region is surrounded by pixels having larger variation. It means,
the gland boundary, either closed or partial closed nuclei chain, would form a closed sharp
edge chain. Accordingly, we adopt a variance filter to highlight the edges and transform the
original gray scale image into a variance based texture space.

Var(I) = δ 2 =
1
n
(

n

∑
i=1

(I2
i ))− (

1
n

n

∑
i=1

Ii)
2,{I|I ∈C(r) = 1 · · ·N} (1)

where I is the image intensity at location (xi,yi). C is the size of filtering window with radius
r. N is the number of pixels in this filtering window. The pixel who has a rapid intensity
change in its neighborhood will have a higher variance value. However, the rapid intensi-
ty change occurs across the whole image, even in the color polluted lumen regions. This
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(a) (b) (c) (d) (e)
Figure 3: Nuclei regions detection. (a) is the original image with high intensity variation of
nuclei; (b) is the binary image obtained from color deconvolution [6]; (c) is the binary image
processed by Laplacian of Gaussian; (d) is the binary image obtained from K-means with
K=3; (e) is the binary image obtained by our proposed approach.

makes it hard to distinguish luminal regions. Instead of extracting the sharp edges from such
a complex environment, we introduced a morphological process which combines Gaussian
blur followed by open-by-reconstruction method [9] to highlight the luminal regions. This
process reduces the variations in luminal regions and makes the pixels in these regions sig-
nificantly different from others.

Morphological reconstruction can be conceptually regarded as repeated dilations of the
seed image to fit the mask image. The open-by-reconstruction is a procedure of erosion fol-
lowed by a morphological reconstruction which aims to preserve the shape of the remaining
image components after erosion. Mathematically, it can be formulated as:

ρI(J)(p) = max{k ∈ [0,N−1]|p ∈ ρTk(I)(Tk(J))},∀p ∈ DI(r) (2)

where I is the original gray scale image, and J is another gray scale image which have pixels
p ∈ DI(r) satisfy J(p)≤ I(p). D is a domain with radius r. The pixels in domain D is from
0 to N-1. ρI(J) is the reconstruction process of I from J, and T is a threshold ranging from
0 to 255. This is a morphological process which can smooth the regional maximum pixels,
see Fig. 2(d). After this process, the variance of lighter pixels, which usually correspond to
the luminal region, are smoothed to zero and the variance of other pixels are reserved. The
luminal regions can then be detected through a simple threshold operator. The results are
shown in Fig. 2(g).

2.2 Nuclei Regions Detection
The result obtained from the previous section consists of candidate luminal regions which
might correspond to true glands or not. To differentiate these true glands from the false ones,
we need to utilize the information of the surrounded nuclei chain.

In H-DAB color image, nuclei are colored as blue or brown, and the brown nuclei have
much lower intensity than the blue ones. This makes it difficult to detect all the nuclei regions
in such an image, as can be seen in Fig. 3(a). The extraction of nuclei regions by applying
color based method [6], K-means clustering method or Laplacian of Gaussian (LoG) method
may all miss detect the blue nuclei due to their weak intensity, see Fig. 3(b)(c)(d). We found
that using the combination of histogram equalization and Laplacian followed by the auto-
threshold method [8] can obtain surprisingly good results, as shown in Fig. 3(e).

176



JIE et al.: MIUA AUTHOR GUIDELINES 5

(a) (b)

Figure 4: Experimental results.(a) The detection accuracy comparison; (b) two of the results.

2.3 Candidate Glands Preparation
After the nuclei regions are extracted, we apply the watershed algorithm to separate the
connected regions into a set of small particles. This split operation can benefit for locating
the bounding box for each gland. We assign a label for each nucleus and do an iterative
region growing to connect most of them. The grown pixels from each nucleus are assigned
the same label as the original nucleus.

We then treat the nuclei-connected image as the mask image, and perform another seeded
region growing for each previously detected luminal regions. In this region growing, the
nuclei touched by each luminal region are recorded separately. After this process, similar
to [2], we define a ringlike outer domain for each seed, which aims to simulate the epithelia
nuclei chain. Besides the nuclei reached by this grown seed, the nuclei whose centers locate
inside this domain are also allocated to this seed. The grown seeds and the correlated nuclei
are jointly considered to be the candidate glands. Then a bounding box is fitted for each
candidate gland.

2.4 Gland Classification
To verify whether these proposed candidate glands are true glands or not, following [3], we
design another Pyramid Histogram of Gradient (PHOG) feature based support vector regres-
sor. PHOG descriptor is a spatial pyramid representation of HOG descriptor, and achieved
good performance in gland detection in [3]. The output of this regressor is considered as the
probability representing how likely the bounding box contains a true gland. It is then used
to rank all the bounding boxes.

3 Experiments
We conduct experiments on the dataset proposed in [3]. Those images are tissue samples of
human colorectal cancers which had been stained for the tumor P53 biomarker. This is an
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important marker of mutation of the TP53 gene and is expressed predominantly in the nuclei
of the cells. Half images of this dataset are used for training and the rest for testing. Besides
the approach in [3], we have re-implemented another approach in [1], which also utilizes the
texture information to detect the glands.

We consider the task as a gland detection problem. A predicted bounding box is treated
as a true positive if its overlap with any ground truth glands is above 0.5. Mean Average
Precision (MAP) [3], which is a widely adopted criterion in object detection literature, is
utilized as the performance measure. Our results together with those previously reported
results are shown in Fig. 4(a). From there we could see that our approach outperforms all
the previous approaches. Some qualitative results are shown in Fig. 4(b).

4 Conclusion
In this paper, we presented an efficient gland detection method in H-DAB image which
can also be applied on other kinds of stained images. Our approach can effectively extract
the luminal regions. In addition, the nuclei regions can also be efficiently detected which
benefits the accuracy of locating each gland. By incorporating another PHOG based SVM,
our approach outperforms all previous approaches on a publicly available gland dataset.

5 Acknowledgement
This work is partially supported by UK EPSRC grant EP/J020257/1 and by the International
Doctoral Innovation Center (IDIC) program of the University of Nottingham Ningbo China
sponsored by Ningbo Municipal Bureaus of Education and Science & Technology.

References
[1] Reza Farjam, Hamid Soltanian-zadeh, Kourosh Jafari-khouzani, and Reza A Zoroofi. An Image Analysis

Approach for Automatic Malignancy Determination of Prostate Pathological Images. Cytometry, 240(May
2006):227–240, 2007.

[2] Cigdem Gunduz-demir, Melih Kandemir, Akif Burak, and Cenk Sokmensuer. Automatic Segmentation of
Colon Glands Using Object-Graphs. Medical Image Analysis, 14(1):1–12, 2010.

[3] Fu H., Qiu G., Ilyas M., and Shu J. A novel polar space random field model for glandular biological structure
detection. BMVA, 2012.

[4] Shivang Naik, Scott Doyle, Michael Feldman, and John Tomaszewski. Automated Gland and Nuclei Segmen-
tation for Grading of Prostate and Breast Cancer Histopathology. Surgical Pathology, (c):284–287, 2008.

[5] Kien Nguyen, Anil K Jain, and Ronald L Allen. Automated Gland Segmentation and Classification for Gleason
Grading of Prostate Tissue Images. Statistics, pages 1501–1504, 2010.

[6] AC Ruifrok and DA Johnston. Quantification of Histochemical Staining by Color Deconvolution. Medline,
pages 291–299, 2001.

[7] Cristian Smochina, Vasile Manta, and Walter Kropatsch. Sampling step importance in hierarchical semantic
segmentation of microscopic images. Building, 2011.

[8] Ridler T. and Calvard S. Picture Thresholding Using An Iterative Selection Method. IEEE Trans System Man
Cybernatics, pages 630–632, 1978.

[9] L. Vincent. Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithm-
s. IEEE Trans. Image Process., pages 176–201, 1993.

178





Poster session 2: Measurement, feature extraction
and computer-aided diagnosis

180



MOHAMMAD ALI et al.: FETAL HEAD DETECTION FROM LOW-COST USB ULTRASOUND1

Fetal Head Detection on Images from a
Low-Cost Portable USB Ultrasound Device
Mohamad Ali Maraci1

mohammad.maraci@eng.ox.ac.uk

Raffaele Napolitano2

raffaele.napolitano@obs-gyn.ox.ac.uk

Aris Papageorghiou2

aris.papageorghiou@obs-gyn.ox.ac.uk

J. Alison Noble1

alison.noble@eng.ox.ac.uk

1 BioMedIA Lab
Institute of Biomedical Engineering
Dept of Eng. Science
University of Oxford
Oxford, UK

2 Nuffield Department of Obstetrics and
Gynaecology
John Radcliffe Hospital
University of Oxford
Oxford, UK

Abstract

Ultrasound (US) has been shown to be a safe and effective imaging modality in de-
tecting pregnancy complications such as breech presentation. The non-invasiveness of
this technique, alongside its cost efficacy and availability have promoted its uptake in
the developed world for routine pregnancy scans and examinations. However the use of
US is far less common in low income countries, particularly in rural areas, as there is
a lack of training for effective use of this technology and accurate interpretation of the
images as well as a relatively high cost associated with the current US devices. Recent
technological advancements in the field have led to lower-cost and portable US devices,
facilitating its use in the developing world. In light of the factors that can affect the
quality of image interpretation, we have investigated whether a combined machine learn-
ing and data acquisition approach to fetal head detection using a low-cost USB probe
is equivalent to the same analysis on a high end probe solution. The results presented
show that the algorithm works successfully on images obtained from both devices and
that statistically no significant difference between the performance of the algorithm on
the two is seen.

1 Introduction

1.1 Diagnostic Ultrasound
Ultrasound (US) as a form of medical technology, is often employed for diagnostic purposes
in the field of obstetrics. The non-invasive nature of US has favoured its use over other
imaging and radiological modalities, particularly as there have been no reports of any adverse
effects as a result of using this technology. Furthermore, US has proved to be very effective
in identifying some of the most prevalent maternal and neonatal mortality and morbidity
factors [8], as well as providing useful information about the growth of the fetus and its
relative position in the womb. Emerging advances in this field have paved way for smaller

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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machines with higher accuracy, and subsequently to the development of portable US devices
and recently USB devices to plug into laptops and smart phones.

Whilst it is important to note the benefits that the use of portable US machines entails,
one also needs to bear in mind that user training still remains a critical and challenging factor
to be addressed for effective implementation of this technology. Ultrasound image analysis
and interpretation is highly influenced by image data quality and the operator’s skills during
and after a scan. Factors such as speckle, shadows, signal drop-outs and attenuation [7]
are amongst the inherent characteristics of US images that can affect the quality of data.
In addition, other aspects such as orientation of the transducer during image acquisition
and low contrast rates between areas of interest will significantly affect the overall image
quality. It is important to note that currently the low-cost portable probes that can be powered
from the USB port of a laptop are simpler, with less sophisticated beamforming and post-
processing which means the images can look quite different and potentially for some tasks
diagnostically inferior. However for certain other applications such as fetal head detection,
we would argue that this is not the case, as argued in this paper the algorithms currently
available have produced equally accurate results on data acquired from a low cost and a mid
range probe.

1.2 Pregnancy Complications: Breech Delivery

Breech presentation is defined as a fetus in a longitudinal lie with the buttocks or feet closest
to the cervix and occurs in 3-4% of all deliveries [5]. The percentage of breech deliveries
decreases with advancing gestational age from 22% of births prior to 28 weeks gestation to
7% of births at 32 weeks gestation and 1-3% of births at term [3, 4, 5, 6]. Previous studies
have shown that vaginal birth of prenatal fetus at a breech position is associated with an
increased risk of adverse neonatal outcomes and even death [6]. The US scan detection of
the fetal head and its relationship with the uterine major axis is essential in diagnosing the
fetal lie and therefore the breech presentation. Furthermore, the detection of the fetal head is
the prerequisite for the fetal head biometry evaluation which is useful for the gestational age
and fetal growth estimation. Hence we were interested in assessing how well the fetal head
can be detected using image analysis solutions on images from a low cost probe.

We follow a machine learning approach for head circumference detection. Carniero et
al. has carried out some related work using Probabilistic Boosting Tree (PBT) [1, 2]. Also
a 2012 ISBI challenge composed a number of methods for head circumference detection on
high-quality data of which the boundary fragment model produced very strong results and
therefore has been used in this study.

2 Materials and Methods

2.1 Data Acquisition

The 2D fetal ultrasound images used in this study were acquired from subjects participating
in a fetal growth study [12]. Data acquisition was carried out using a mid-range ultrasound
machine, Philips HD9 with a V7-3 transducer denoted as A, and a low-end portable USB
ultrasound machine, Interson Seemore denoted as B, by an obstetrician trained to follow
standardized procedures [9]. The participants are fifteen healthy pregnant women, aged 20
to 38 with the fetus at a gestational age of 16 to 39 weeks. For data acquisition probe A was

182



MOHAMMAD ALI et al.: FETAL HEAD DETECTION FROM LOW-COST USB ULTRASOUND3

(a) (b)
Figure 1: (a) Philips V7-3 on the top and the Interson Seemore transducer on the bottom. (b)2
sample images from the Philips HD9 and the V 7−3 transducer (top) and Interson SeeMore
probe(bottom).

used twice for each participant resulting in a total of 30 images obtained using A. Similarly
probe B was also used twice for each participants resulting in another 30 images acquired
using B.

Image acquisition was carried out by the same obstetrician and during the same session.
The participants were scanned with the two ultrasound probes with the intention to include
the same anatomical features while keeping external conditions constant. Figure 1 illustrates
a sample image obtained using the two ultrasound probes.

2.2 Analysis

The Boundary Fragment Model (BFM) utilised in this study [10] allows an object to be
represented by its scale-normalised edge responses. An initial step towards the construction
of the model is to determine the position and orientation of each edgel in the input images.
An edge fragment library is then constructed for the fetal skull by manually labelling the
inner and outer edgels on the edge maps. The resulting edge fragment library is composed
of fragments that jointly describe the boundary of the fetal skull. Finally a boosted classifier
is used to identify the scale and center of the fetal skull in the training images. The trained
classifier is then used to detect the fetal skull in unseen images by firstly detecting the scale
and centroid of the skull and using fragments from the edge fragment library to weakly
describe the shape of the skull. An iterative ellipse fitting algorithm [11] is then used to fit an
ellipse on the identified skull edges. The reader is referred to [10] and [11] for an extensive
explanation of the two methods.

2.3 Validation Methods

The images were graded using a Likert-scale system as previously reported in the literature.
The Likert-scale used in this study is set from 1− 3 where the grades represent poor, f air
and good respectively from 1 to 3. The results were graded with the assumption that all the
grades have the same weight. Thus images are divided into two classes; class 1 includes
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(a) (b)
Figure 2: (a)The Interson Seemore and Philips images are shown on the top and bottom
rows respectively with the Ellipse fitting results on the left and BFM on the right - The fitted
ellipse has been highlighted for clarity. (b)The edge detection has not worked well due to
the bright attenuation marks.

images which are rated as poor and class 2 includes images rated f air or good. To analyse
the results, the images were assessed prior to any processing. This is to measure 1) sharpness
of the images and 2) the visibility of the region of interest (ROI) to get a better insight into
the accuracy of the model, given the initial difference in appearance between the images
obtained from the two probes. This assessment was carried out by the author with visual
checks by an obstetrician. A two tailed Wilcoxon signed-rank test with a 95% confidence
interval was used to indicate if there was statistically a significant difference between the
result of the head detection algorithm on images acquired using A and B.

3 Results

3.1 Head Detection Performance

3.1.1 Pre-processing Analysis

The Likert-scale grading results show that from the 30 images that are acquired from A in
this experiment, 6 and 2 images are graded as poor in terms of visibility and sharpness re-
spectively, before the head detection algorithm is applied. In comparison the results obtained
from B suggest there is a clear difference in the appearance and visibilty of the ROI as 19
images are rated as poor and the rest are rated fair.

3.1.2 Head Detection Analysis

The results show that 7 images acquired via A are in class 1 and the other 23 in class 2
suggesting an overall success of 76.7 % in identifying the head boundaries. The results for B
are also very high with 6 images in class 1 and 24 images as class 2, indicating an accuracy
of 80%. The results suggest that the sharper appearance of the edges of the skull in images
obtained from B are a great contribution factor for the high accuracy in the results. Figure 2
illustrates the result of the BFM and Ellipse fitting algorithm on an image obtained from the
two probes, A and B. Also an example where the algorithms have not worked so well can be
seen in Figure 2.
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Table 1: The Results of Visibility & Sharpness of the ROI in images obtained with the A and
B probes, before and after head detection.

Good Fair Poor p Value
No% No% No% Wilcoxon Rank Test

Visibilitya 40.0 20.0 20.0 6.69∗10−4

Visibilityb 0.0 36.7 63.3
Sharpnessa 46.7 46.7 6.6 1.23∗10−4

Sharpnessb 0.0 43.3 56.7
Head Detectiona 46.67 30.0 23.33 0.2012
Head Detectionb 73.33 6.67 20.0
a. Philips Probe

b. SeeMore Probe

The Wilcoxon Signed-Rank test results from Table 1 show that statistically no significant
difference between the accuracy of the results were found (p=0.2012). However there is a
significant difference in the sharpness (p=0.00067) and visibility (p=0.00012) before the
images are processed, as expected. This is a positive result which suggests that although
the visibility and sharpness of the images from a low-cost probe might not be as high as a
mid-range probe, the performance of the head detection algorithm may not be effected by
the source of the images as shown in this study.

4 Conclusions

We have described a new application of a Boundary Fragment Model on images obtained
from a low-cost USB ultrasound probe, with the aim to utilise this in resource-constrained
regions for detection of breech labour position. The statistical analysis shows that the fetal
head detection and segmentation algorithms work well with the images obtained from the
low-cost USB probe. In future work we will analyse more data with validation by obstetri-
cians. Also we will be looking at gestational age estimation using the images obtained from
the USB probe. A limitation of the study is that the data obtained from the two probes is not
from the same virtual slice. The effect of this however is minimized by following a defined
protocol carefully and thus this does not seem to have affected the results.
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Abstract

We propose a semi-automatic framework for fitting a continuous, parametric surface
to cranial boundaries in 3D fetal ultrasound (US) images. The user provides an initial
alignment of the surface so that it respects anatomical brain regions. The surface is then
deformed to adhere to the cranial boundary, respecting its non-ellipsoidal shape while
maintaining the user-provided anatomical alignment. Our framework has applications in
preprocessing images for 3D fetal brain image analysis, and for the extraction of clini-
cally useful cranial measurements. We evaluated our framework on 45 fetal US images.
An average user time of 1.44 minutes was required for initialization and a visual inspec-
tion of results is presented.

1 Introduction

The goal of brain image analysis is to investigate intracranial structures using image infor-
mation from different subjects and different time points. To achieve this, it is necessary to
establish a common coordinate frame between test images. The typical approach for neu-
roimage preprocessing involves skull stripping followed by registration, in order to deform
the images into a common image domain. This inherently relies on the anatomical delin-
eation of internal brain structures within the images.

In developing brains, registration is complicated by absent, underdeveloped, or incon-
sistent anatomical landmarks for alignment [5]. In particular, analysis of ultrasound (US)
images is further complicated by the thickening of cranial bones which results in the ob-
struction of the intracranial landmarks necessary for registration. However, the skull is re-
liably visualized due to its echo-bright appearance in comparison to its surrounding tissues.
This property of fetal brain US images potentiates the need for a method of obtaining image
alignment on the basis of a “cranial domain” as opposed to a “voxel domain”. To achieve
this, we propose a semi-automatic framework to fit a continuous parametric skull surface
into each test image. The domain of the surface acts as the cranial domain, allowing image
information to be anatomically queried from any subject based on skull position.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) (b) (c)
Figure 1: Surface Model (a) The control mesh (green) defines its underlying surface (pink).
(b) The control vertices and faces are color-annotated with the anatomical regions with which
they will align, and (c) these annotations are propagated down to the surface.

In our framework, the user provides a rough alignment of the skull surface to the imaged
brain (Sections 2 and 3). The surface is then minimally deformed to the inner skull bound-
aries without changing the topology of the surface points (Sections 4 and 5). A discussion
of the framework follows in Section 6.

2 Surface Model

A biquadratic B-spline surface specified by control vertices X ∈ RNX×3 and control mesh
T models the skull surface. A point p on the surface is parametrized by u ∈ Ω, where
Ω⊂ R2, so that p = M(u,X) with M : Ω×RNX×3→ R3. The surface normal at u is defined
by n = Mφ (u,X) with Mφ : Ω×RNX×3 → R3. Exact analytic evaluation of M(u,X) and
Mφ (u,X) for any control mesh is achieved using Doo-Sabin subdivision [2].

The skull control mesh was crafted to be approximately spherical with 96 vertices and 98
faces (Figure 1(a)). To facilitate the manual initialization process, the vertices and faces of
the control mesh were color-annotated with four anatomical landmarks discernible in fetal
brain US images: right hemisphere (red), left hemisphere (green), frontal cortex (yellow),
falx cerebri (junction between red and green), and base of the brain (gray) (Figure 1(b)). The
annotations associated with each point on the control mesh then define the coloring of the
underlying surface (Figure 1(c)).

3 Surface Initialization

To initialize the surface control vertices (X0) the user rigidly aligns the default skull surface
to the imaged brain using a multi-view graphical user interface (GUI). This is achieved by
manually:

(a) Displacing the center point of the default surface (Figure 2(a)) to roughly align with the
center of the brain, and

(b) Rotating and anisotropically scaling the surface such that the surface annotations are
roughly aligned to their anatomical positions, approximating the cranial dimensions
(Figure 2(b)).
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(a) (b) (c) (d)
Figure 2: Surface Deformation Axial view of an example fetal head with (a) default anno-
tated surface, (b) user-initialized surface, (c) deformed surface. (d) 3D rendering of deformed
cranial surface.

4 Surface Deformation
For a given test image, candidate interior skull positions C ∈RNC×3 and normals Φ ∈RNC×3

are generated using standard US edge detection techniques — Feature Asymmetry [4] with
an isotropic log-Gabor filter followed by non-maximum suppression.

Given a matrix U of NU surface points, the energy defining the fit of the surface to some
selection l ∈ NNU of boundary candidates is given by 1:

E(l,U,X) =
NU

∑
i=1

{∥∥cli −M(ui,X)
∥∥2

+λ1
∥∥φli −Mφ (ui,X)

∥∥2
}

︸ ︷︷ ︸
Eunary(l,u,X)

+λ2 ∑
(i, j)∈N

∥∥∥cli − cl j

∥∥∥
2

︸ ︷︷ ︸
Epairwise(l)

+λ3

NX

∑
i=1

∥∥xi−x0
i
∥∥2

︸ ︷︷ ︸
Euser(X)

+λ4 ∑
(i, j)∈T

∥∥xi−x j
∥∥2

︸ ︷︷ ︸
Ereg(X)

(1)

where N is the set of edges over the surface points and is derived from the Doo-Sabin
subdivision procedure and Λ = (λ1,λ2,λ3,λ4) controls the influence of each term.

Stepping through Equation 1, Eunary quantifies the position and orientation mismatch
between each surface point ui and its corresponding boundary point li. Epairwise models the
fact that boundary points are spatially correlated so that neighboring surface points prefer
boundary points which are close. Euser encourages minimum deformation from the user
initialization but more importantly removes the problem of finding multiple local minima
that may arise from the geometric symmetry of the near-ellipsoidal shape. Ereg encourages a
smooth surface by penalizing large displacements between the surface control vertices.

To make the model robust to missing boundary information over large sections of the sur-
face, we augment C with “phantom” boundary candidates which are located at each surface
point pi = M(ui,X) and incur a fixed unary penalty ζ if chosen:

E i
robust-unary(l,u,X) =





Eunary(l,u,X) li ≤ NC
ζ li = NC + i
0 otherwise

(2)

This robust unary E i
robust-unary replaces Eunary in Equation 1, and the augmented candidate

matrix is used in place of C in Epairwise(l).
1Note that upper case letters denote matrices and lower case bold letters denote row vectors.
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We find a local minimum to Equation 1 by performing alternating discrete and continuous
optimization steps (Figure 3). Initializing X to X0 and U to a regular sampling of Ω, we use
belief propagation with a subset of edges in Epairwise to solve for an approximate l which is
then refined using QPBO [3]. Next, given l, Equation 1 is minimized jointly with respect to X
and U using the Levenberg-Marquardt algorithm. Note that if robust labels are chosen during
the discrete step, Epairwise is also dependent on X and U because of the “phantom” boundary
candidates. It should be emphasized that we do not fix U or restrict boundary candidates
to be perpendicular to the model surface, which is typically done in “Snakes” and Active
Contours. In conjunction with Ereg, this strongly discourages surface folding and stretching.

5 Experiments and Results
The cranial deformation model framework was applied to 45 randomly-selected 3D US im-
ages of the head from healthy fetuses at 22 weeks of gestation. Each image was typically
of dimensions 215× 230× 151 with a resolution of 0.2× 0.2× 0.2mm3. An operator2 ini-
tialized a surface mesh into each individual image, spending an average of 1.44 minutes per
image. Solving time took approximately 2-3 minutes, dominated by the two discrete opti-
mization steps (Figure 3). Identical model parameters of Λ = (8.0,3.0,0.25,1.0), ζ = 600.0,
and NU = 1536 were empircally selected and used for all test images. Small changes to Λ
and ζ did not result in drastically different recovered surfaces.

Cranial Deformation Our framework updates the control mesh geometry so that the un-
derlying surface matches the cranial boundary. This is evidenced by Figure 4 in which the
deformed surfaces are displayed on orthogonal image slices for four of the 45 examples,
showing the variability of fetal head pose. Each example highlights that the surface is ca-
pable of deforming such that it closely adheres to the inner skull boundaries, respecting the
skull’s non-ellipsoidal shape.

Anatomical Consistency The deformation process modifies the geometry of the control
mesh but preserves topology. To demonstrate this, we first specified cutting planes in the
cranial domain. Next, using the deformed surfaces in each image we evaluated these cutting
planes in image coordinates (Figure 5). It is evident that the same intracranial structures are
visible within the different images, with consistent anatomical positioning. The surfaces pro-
vide a cranial parametrization which retains anatomical consistency between images, void-
ing the need for transformation of the images into a common image voxel domain. However,
the anatomical positioning is reliant on a correct anatomical alignment provided by the user
initialization.

6 Discussion
We have developed a framework to fit a parametric surface into 3D fetal US scans. This
relies on the user to provide a prior for each model surface which is then deformed to fit the
interior skull boundary. Our method recovers detailed structure of the skull and anatomically
consistent skull surfaces. However, fine-grained alignment is still desirable and our results

2The operator did not partake in the development of the graphical user interface or the surface deformation
framework.
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Figure 3: Example Convergence (ζ = ∞) Each iteration of discrete optimization (n = 0,10;
orange lines) solves for l, affecting only Eunary and Epairwise. Subsequent continuous opti-
mization steps minimise U and X jointly until convergence, affecting all energies except
Epairwise. Note the increase in Eunary at n = 10 is accompanied with a larger decrease in
Epairwise.

Figure 4: Cranial Surfaces Four example cranial deformations for the orthogonal image ac-
quisition slices: coronal (first column), transverse (second column), and axial (third column).
The resulting deformed surface (right) is shown for each example.
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Figure 5: Slice Extraction Axial (first row) and coronal (second row) slices extracted from
deformed surfaces of six different images at planes defined by 3 points (white). Color anno-
tations display the anatomical consistency between different slices.

show that this should be possible by modeling geometric and appearance similarity between
the frames, leading to simultaneous fitting of all model surfaces.

The fact that the surface deforms to adhere to the inner skull boundaries means that it con-
veniently separates the brain from extracerebral tissue such as the skull, skin, and maternal
tissues. Thus, this framework may prove useful as a preprocessing technique for neuroimage
analysis algorithms such as segmentation and registration. In addition, the delineation of the
cranial outline may allow for the extraction of clinically useful biometric measurements for
applications in fetal growth monitoring and detection of craniofacial dysmorphology [1].
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Abstract

Traditionally surface Electromyography (EMG) has been used to non-invasively iden-
tify the activation of superficial skeletal muscle. We propose that the automated analysis
of Ultrasound (US) images can provide an alternative technique by which active and pas-
sive muscle movement may be classified. We present a method by which the change in
muscle shape can be extracted from pairs of sequential US images and used to classify
whether that shape change was caused by active or passive muscle lengthening. Re-
sults are presented which show that our method can correctly classify active and passive
movements with greater than 95% accuracy and is less affected by change in contraction
strength than EMG.

1 Introduction
There are many methods available that provide ways by which muscle activity can be anal-
ysed - most notably EMG (surface) or IEMG (intramuscular). Electrodes placed on the skin
(EMG) can measure activation of superficial muscle but there is an inherent level of noise
which can make it difficult to identify activation at small forces/velocities; this is particu-
larly true if a small activation co-occurs with a larger one. Filtering an EMG metric can help
in the extraction of meaningful physiological information about muscle activity, but often
the signal to noise ratio is too low to reveal anything at low force exertion [4]. Thin wire
electrodes inserted into the muscle through the skin (IEMG) can measure contraction in both
superficial and deep muscle, and is generally considered a more accurate representation of
activity than EMG. IEMG is more susceptible to external electrical noise, measures a small
volume within the muscle, and is invasive (IEMG requires a sterile environment; there is
also an inherent risk factor when measuring motor neurons near the spine and neck). Ultra-
sound has been considered by many as a possible alternative method of measuring activity in

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 RYAN CUNNINGHAM: AUTO MEASUREMENT OF CONTRACTION VIA ULTRASOUND

Figure 1: ASM segmented (blue contours) US of relaxed GM (Gastrocnemius Medialis;
superficial muscle in the calf) and array of point features (white dots) over GM. Sheer, thick-
ness and width (MS, MT, MW) are calculated as: the mean difference in x displacement of
the top and bottom row of point features, the mean difference in y displacement of the top
and bottom row of point features, and the mean difference in x displacement in the leftmost
and rightmost columns.

skeletal muscle [3, 4, 5, 6]. US is entirely non-invasive, risk free, cost effective, and has been
shown to be more sensitive to architectural changes (such as pennation angle, cross-sectional
area) resulting from contraction than EMG at low force exertion [4, 6]. US can also analyse
a much greater cross-sectional area of muscle tissue.

Recent work [3] has demonstrated that with the application of computer vision tech-
niques (such as ASM [1], and KLT feature tracking [7, 8]), useful information about muscle
architectural changes can be automatically derived from US. We propose that further to this,
measures derived from architectural changes of muscle can be used to correctly identify
whether the shape change was caused by external forces (i.e. passively) or by voluntary
contraction (i.e. actively).

2 Methodology

2.1 Segmentation and Motion Tracking

An ASM was used to segment 25Hz US video sequences of GM, then KLT features were
selected within the intramuscular area on a 7× 7 grid arrangement and tracked into the
next frame. The ASM segmentation was then updated and features re-selected to prevent
tracking drift beyond the image boundary. A square KLT feature window size of 55px was
used across all trials. Figure 1 illustrates the tracking process. GM contours in 450 images
(describing range of motion for each participant) were marked up and used to train the ASM.
The principal component model was constructed at runtime from the mark-up database.

A non-standard initialisation step was used with this model. At the start of each video
sequence, the most accurate mean shape was chosen from all known participant shape means.
This is done by iterating over each participant mean and calculating the Mahalanobis distance
from each contour point to the statistical models of gradient calculated during training. At
this point the best fit from the participant i.e. that with the lowest total Mahalanobis distance,
was used as the “mean shape” for the duration of that video sequence. Other than this change,
the ASM used was as defined in [1]. This method of segmentation and tracking is described
in detail in previous work [3].
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segmentation is then updated and features re-selected to prevent tracking drift beyond the
image boundary. A square OF feature window size of 55px was used across all trials. Fig-
ure 1 illustrates the motion tracking process. GM contours in 450 images (describing range
of motion per participant) were marked from trial 1a of 9 of the 12 participants, which were
used to train the ASM. The principle component model is constructed at runtime from the
image mark-up database and is parametric (Max Fitting Iterations; Maxit , Gaussian Smooth-
ing Kernel; Gs, K pixel contour joint profile derivative).

A non-standard initialisation step is used in this model. At the start of each video se-
quence, the most accurate mean shape is chosen from all known participant shape means.
This is done by iterating through each participant mean and calculating the Mahalanobis dis-
tance from each contour point to the statistical models of gradient calculated during training.
At this point the best fit from the participant i.e. that with the lowest total Mahalanobis dis-
tance, is used as the “mean shape” for the duration of that video sequence. Other than this
change, the ASM used is as defined in [2].

2.2 Model of Muscle Shape Change

Previous measures used to assess muscle shape change have included muscle thickness, and
muscle sheering [5, 7], in addition to these measures we also consider muscle widening in
our analysis (see Figure 1). We suggest that rather than distilling the muscle shape change
between two frames into two or three single value metrics, the use of grid sampling over the
entire cross sectional area of the muscle will provide additional information about the active
or passive nature of that shape change. We consider all of the 49, point features on a per
frame basis, in our analysis. Figure 2 shows examples of how we extracted information that
can be used to approximate width, thickness and sheering from the point features.

Xc=1 Xc=3 Yc=1 Yc=3 Xr=1

Xr=4

Figure 2: Left: A vector of X displacements per column (sheering). Center: A vector of
Y displacements per column (thickening). Right: A vector of X displacements per row
(widening).

To use the entirety of the data, would result in 198 dimensions which we considered to
be too many. For reduction of dimensionality we compute the mean sheering per column,
S̄c, mean thickening per column T̄c, and mean widening per row W̄r. Since the magnitude
of active movement over passive movement is ≈ 1 order greater [7], in order that we avoid
solving an ill-posed problem we remove velocity from the data by normalising on a per frame

Figure 2: Left: A 3-item vector of x-direction displacements per column (sheering). Centre:
A 3-item vector of y-direction displacements per column (thickening). Right: A 4-item
vector of x-direction displacements per row (widening).

2.2 Muscle Shape Change Modelling
Previous measures used to assess muscle shape change have included muscle thickness and
muscle sheering [4, 6], in addition to these measures muscle widening is also considered
in our analysis (see Figure 1). Rather than distilling the muscle shape change between two
frames into 2 or 3 scalar metrics, the use of grid sampling over the entire cross-sectional
area of the muscle provides additional information about the active or passive nature of that
shape change. All of the 49 point features were considered on a frame by frame basis, in
the analysis. Figure 2 shows examples of how information is extracted that can be used to
approximate width, thickness and sheering from the point features.

To use the entirety of the data would result in a 98-dimensional feature vector, where
the sample size is 6,672. For reduction of dimensionality the mean sheering per column, S̄c,
mean thickening per column, T̄c, and mean widening per row, W̄r were computed. Since
the magnitude of active movement over passive movement is≈ 1 order of magnitude greater
[6], in order to avoid solving an ill-posed problem, velocity was removed from the data by
normalising on a per frame basis, giving a relative velocity (shape of motion). Sheering,
thickening and widening measures (SS, ST, SW) are created as

SS = { S̄c }∀c = { Xcr }∀r
ST = { T̄c }∀c = { Ycr }∀r

SW = { W̄r }∀r = { Xcr }∀c.
(1)

This leaves 3 vectors containing 7 mean displacement values which are uses as a 21 dimen-
sional descriptor of shape change between each two frames.

2.3 Activity Determination
An SVM [2] was used for the classification of active and passive shape changes. The training
data was labelled using force exerted in active trails per participant to define when the muscle
is being moved actively, and corresponding frames of each following passive trial to define
when the muscle was being moved passively. The segmentation was defined as

s(v, t) =
(
( fvt > σv)∨

(
d ( fkt)

dt
> σk

))
¬
(

d ( fkt)

dt
<−σk

)
(2)

where v is the trial, t is the frame, k is a constant (k = 1), σv is the standard deviation of force
in trial v, and fvt is the force in trial v at frame t.
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4 RYAN CUNNINGHAM: AUTO MEASUREMENT OF CONTRACTION VIA ULTRASOUND

Figure 3: SVM optimisation error surface, where the cost function E(D−,C,σ) (see Equa-
tion 4) is plotted against RBF σ and the SVM Box Constraint, C.

Leave one participant out cross validation was used to train the SVM, where a single
participant’s data was used to validate and all remaining participants’ data was used to train.
Both the training and validation data were created from the sheer, thickness and width mea-
sures according to

D = {|SSt ,STT ,SWt |}∀t. (3)

The SVM used here had a Gaussian Radial Basis Function (RBF) kernel and was trained
with the binary training signal of all participants, to differentiate between active and passive
shape changes. The SVM was optimised during training by varying the hyperplane margin
C and the RBF σ parameters. The optimisation function - where minimal distance between
the two errors reduces the bias on the training samples - is defined as

E(D−,C,σ) =
SσC(D−)error+SσC(D)error

2 + |SσC (D−)error−SσC (D)error|

Minimise : E(D−,C,σ) ∀C ∈ R : 0→ e4.5, ∀σ ∈ R : 0→ e4.5, ∀D− ∈ D
(4)

where D− is the validation set D− ∈ D, D is the training set D ∈ {x1,y1, ...xn,yn}−D− and
SσC (D)error is the error of the SVM (SσC) on the set D.

2.4 Data Collection
Simultaneous US and EMG measurements were made over 3 sets of 2 trials (20s duration)
with 12 participants, positioned upright with their backs against a stiff board, standing on
programmable foot pedals. For the first of each set (trial a) participants rotated the foot
pedals in a plantarflexion (increasing the joint angle between shank and foot) motion (with a
diminished level of force from trials 1–3), while maintaining their body posture; the pedals
automatically returned to level if no force was exerted. The force exerted (Nm) and foot pedal
angle (degrees) were recorded at 1000Hz. The force was used to actuate the motors on the
foot pedals which caused an ankle plantarflexion rotation. For the second of each set (trial
b) participants allowed their ankle angle to rotate freely with the pedals while maintaining
posture; the recorded angle from each participant’s trial a was used to drive the motors in

196



RYAN CUNNINGHAM: AUTO MEASUREMENT OF CONTRACTION VIA ULTRASOUND 5

Trial 1 Trial 2 Trial 3
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
at

 E
qu

al
 E

rr
or

 (
%

)

 

 
SVM
EMG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

SVM 95.11%
MS 62.69%
MT 55.03%
MW 52.12%
EMG 68.49%
Force 83.52%
Angle 50.06%
Equal Error

Figure 4: Left: SVM/EMG comparison showing accuracy at equal error over contraction
strengths for all participants. Right: ROC curves for all participants over trials 3a–3b (lowest
activity trials) only, showing accuracy at equal error.

trial b, resulting in passive muscle length changes occurring within the corresponding time
frame to the active muscle length changes in trial a. Data were recorded via EMG over
the GM muscle at 1000Hz, and an US probe secured to GM. All US video sequences were
collected at a static temporal resolution of 25Hz.

2.5 Data Processing

EMG was filtered with a sixth order high pass Butterworth filter, followed by rectification
and a second order, low pass filter. Cubic interpolation was used to re-sample the recorded
US measures (see Equation 1) from 25Hz–1000Hz. The data were realigned temporally via
cross-correlation of US and external measures, with a maximum possible US realignment of
15 frames (assuming that US measures will always lag behind force output). On average US
lags the external measures by ≈ 13 frames (0.52s).

3 Results

Receiver Operating Characteristics (ROC) (see Figure 4) were computed on the optimised,
cross-validated SVM and all other measures. An ROC threshold step interval of 1

500 was
used. After filtering the SVM time-series output with a low pass Butterworth filter, the
SVM shows a highly reliable classification accuracy of 95.11% at equal error. Independent
US metrics (MS, MT, MW) report reasonable accuracy, with fascicle sheering operating at
62.69% accuracy at equal error. EMG does prove reliable in the majority of cases, but for
some participants the noise threshold was enough to bring the accuracy down to 68.49% at
equal error. The significance of these results is in the fact that they represent the classification
accuracy of low force muscle activations. Figure 4 (Left) shows that the SVM (Ultrasound)
is more accurate over all trials, than EMG, with greater consistency at lower force exertions.
The average peak force exertion over all participants for trial 3a is 21.47Nm, and the average
peak foot pedal angle is 4.37◦. The average peak force exertion over all participants for trial
1a is 64.35Nm and the average peak for foot pedal angle is 8.51◦.
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6 RYAN CUNNINGHAM: AUTO MEASUREMENT OF CONTRACTION VIA ULTRASOUND

4 Conclusions
It has long been established that there is a non-linear relationship of sensitivity to physio-
logical change under force between US and EMG, with US being more sensitive to change
at smaller activations in the isometric case [4]. It has previously been established that these
changes can be measured automatically [3, 6]. We have shown that it is possible to correctly
classify an active or passive muscle shape change from automated analysis of temporal skele-
tal muscle US, even when the joint rotation angle is identical. The technique presented here
has also been shown to offer a more accurate classification between active and passive mus-
cle shape change than surface EMG on this data set. This method establishes a starting point
in the construction of a comprehensive model of human muscle function, which combines
muscle length change, activation and joint angle. Future work will explore the wider ap-
plication of this technique to other, less accessible, muscles such as deep muscles near the
spinal cord and cervical muscles in the neck.
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Abstract
The quantification of cortical bone mineral density (BMD) and thickness in QCT im-

ages remains challenging due to the limited spatial resolution of the CT scanner. In our
work, we used three different algorithms to determine changes of cortical thickness and
cortical BMD and investigated their ability to detect a change of these two parameters.
Another part of this study was to investigate the influence of noise on these measure-
ments. Therefore, all simulations were performed at two different noise levels.

1 Introduction
Cortical bone is an important component of bone strength and therefore the quantification
of cortical thickness and BMD at the hip, spine and forearm is of major interest in the field
of osteoporosis. However, if the cortical thickness is smaller than 1 mm, the limited spatial
resolution of whole body clinical CT scanners causes partial volume artifacts and as a con-
sequence, cortical thickness may be over- and cortical BMD underestimated in quantitative
computed tomography (QCT).

The consequences of spatial blurring have been studied extensively. Prevrhal et al. pro-
posed a method based on local adaptive 50% thresholds, which is fast but leads to an overes-
timation of thickness for thin cortices [2]. Other methods based on thresholding also suffer
from inaccuracies if cortices are thin [1]. Recent publications by Treece et al. use optimiza-
tion techniques to overcome these problems [3].

The studies summarized above show that the accuracy of cortical thickness and density
measurements depends on the segmentation method. Since it is essential to quantify age and
drug related changes over time, we investigated the effects of three different segmentation
techniques on simulated changes in cortical BMD and thickness.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 Materials and Methods

2.1 Simulation of Image Acquisition

Figure 1: Profile across cor-
tex. BMDt represents trabec-
ular, BMDc cortical bone and
BMDs soft tissue.

Segmentation of cortical bone typically is based on the
BMD analysis along local profiles perpendicular to the outer
bone surface. A possible method to obtain such BMD pro-
files from CT images is shown in Fig. 1. After an initial seg-
mentation, which for example can be performed by volume
growing, the bone surface is triangulated. For each vertex,
a linear bone profile BMD(x) is obtained by measuring the
BMD values along a line p perpendicular to the outer bone
surface.

The true bone profile BMD(x) can be modelled as a sum
of step functions of varying width and height and can be
described as

BMD(x) = BMDt +(BMDc −BMDt)H(x− x1)

+(BMDs −BMDc)H(x− x2)
(1)

where the indices t, c, and s stand for trabecular bone, corti-
cal bone and soft tissue. H(x) is the Heaviside Function,
while x1 and x2 determine the positions of the inner and
outer bone surfaces. Therefore, the true cortical thickness
is tc = x2 − x1.

Eq. 1 is convoluted with a Gaussian function g(x;σ ,µ =
0) approximating the point spread function of the CT scan-
ner. The full width at half maximum (FWHM) is assumed
as the scanner resolution. Therefore, the blurred profile
BMDb(x), simulating the density distribution within a re-
constructed CT image, can be calculated as

BMDb(x) =
∫ ∞

−∞
BMD(t)g(x− t;σ)dt (2)

2.2 Estimation of Cortical Thickness and BMD
Three different algorithms are used to calculate the estimated cortical thickness te: a global
threshold (GT), a local adaptive thresholds based on 50 % thresholds (LAT) and an optimiza-
tion method based on Levenberg-Marquardt algorithm (OM).

GT uses global threshold values to separate soft tissue, cortical and trabecular bone. In
our study we use 400 mg/cm3 to segment cortical bone from soft tissue and 200 mg/cm3 to
differentiate cortical and trabecular bone. AT calculates threshold values, which are locally
adjusted for each profile perpendicular to the bone surface. The positions of the outer and
inner bone surfaces x1 and x2 are determined by calculating 50 % threshold values for each
side of the cortex [2]. OM is based on a method described in [3]. The result of eq. 2 is fitted
to each profile and the parameters BMDt, BMDs, x1, x2 and σ are determined using the
Levenberg-Marquardt method. BMDc is measured in the shaft below the lesser trochanter
where tc � FWHM and therefore cortical intensity is not affected by partial volume artifacts.
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To estimate cortical density BMDe at a location of interest, the blurred density profile
BMDb(x) is integrated between the edges x1 and x2 and divided the result by te [2]:

BMDe =
1
te

∫ x2

x1

BMDb(x)dx (3)

2.3 Simulation Parameters
We simulated 2.5 %, 5.0 % and 7.5 % increases of BMDc and 5 %, 10 % and 20 % increases
of tc, which may also occur in practice, by varying the height and width of the true bone
profile BMD(x) for different initial cortical thickness values. Following this, BMD(x) is
convoluted with a Gaussian distribution (see eq. 2) to create the blurred profile. Finally,
the resulting curve is discretized to simulate a voxel size (s) and Gaussian noise of standard
deviation σnoise added.

Each profile was simulated 20 times, the changes ∆te and ∆BMDe were estimated using
the methods described in 2.2 and the results compared with the known true values. Baseline
BMDc was assumed to be 1400 mg/cm3. The following parameters were kept constant
during the simulation process: BMDt = 75 mg/cm3, BMDs = 0 mg/cm3, FWHM = 0.5 mm
and s = 0.25 mm.

3 Results

3.1 Variation of Cortical Thickness
The effects of an assumed longitudinal 5 %, 10 % and 20 % cortical thickness increase on
measured changes (∆te and ∆BMDe) with zero noise and two different noise levels are shown
in Fig. 2 as a function of tc/FWHM.

(a) (b) (c)

(d) (e) (f)
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(g) (h) (i)

(k) (l) (m)

(n) (o) (p)

(q) (r) (s)
Figure 2: Increase of tc. Mean values of estimated changes of ∆te ((a) to (c), (g) to (i) and
(n) to (p)) and ∆BMDe ((d) to (f), (k) to (m) and (q) to (s)) as a function of tc/FWHM for an
assumed 5 % (first column), 10 % (second column) and 20 % (third column) increase of true
cortical tc. (a) to (f) were simulated for σnoise = 0 mg/cm3, (g) to (m) for σnoise = 30 mg/cm3

and (n) to (s) show the results for σnoise = 37 mg/cm3

With LAT, the increase of cortical thickness is underestimated for thin cortices, but this
method provides a good accuracy for tc > 2 FWHM, whereas GT leads to an underestimation
of ∆tc even for tc = 3 FWHM. OM shows the best results in particular in the range FWHM <
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tc < 2 FWHM. For smaller tc, OM is severely impacted by large variances. For all three
segmentation techniques, the assumed increase in cortical thickness results in an artificial
increase of cortical BMD, which was larger for thinner cortices.

3.2 Variation of Cortical BMD
The effects of an assumed longitudinal 2.5 %, 5.0 % and 7.5 % cortical BMD increase on
measured changes (∆te and ∆BMDe) at two different noise levels are shown in Fig. 3 as a
function of tc/FWHM.

With OM, the simulated increase in BMDc results in a falsely detected increase of
∆te, which was larger for thinner cortices, and an underestimation of ∆BMDc even for
tc = 4 FWHM. It must be remembered that BMDc used in the fit is set to 1400 mg/cm3 and
is not adapted to the simulated BMDc change. Furthermore, it can be questioned whether a
5 % change at the location of interest also occurs in the region where the true value is deter-
mined. The use of LAT shows small changes in ∆te and a slight overestimation of ∆BMDc
for tc < 2 FWHM.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(k) (l) (m)
Figure 3: Increase of BMDc. Mean values of estimated changes of Dte ((a) to (c) and (g) to
(i)) and ∆BMDe ((d) to (f) and (k) to (m)) as a function of tc/FWHM for an assumed 2.5 %
(first column 1), 5. % (second column) and 7.5 % (third column) increase of true cortical
BMCc. (a) to (f): σnoise = 30 mg/cm3, (g) to (m): σnoise = 37 mg/cm3.

4 Discussion
Three different segmentation techniques were used to quantify longitudinal changes of cor-
tical thickness and BMD. All simulations were performed for two different noise levels.

For the lower noise level each algorithm show good results for tc > 2 FWHM. For
thinner cortices, OM performs best in detecting changes of tc. All three methods, however,
overestimate ∆BMDc for tc < 2 FWHM. A true change in cortical BMD with constant
cortical thickness can most accurately be measured with LAT and GT for tc > FWHM. OM
underestimates ∆BMDc, and measures a false increase in cortical thickness, which is not
the case for LAT and GT. For tc < FWHM all three segmentation algorithms are strongly
affected by increasing noise in particular with respect to ∆BMDe. As a consequence, changes
of cortical thickness and BMD are much harder to detect even in the range of tc < 3 FWHM.

These results must still be verified in more advanced simulations, e. g. considering pe-
riosteal apposition.
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Abstract

Nailfold capillaroscopy (NC) is a valuable method for observing micro blood vessel
characteristics and is particularly useful for early detection of scleroderma spectrum dis-
orders and evaluation of Raynaud’s phenomenon. Diagnosis involves the recognition of
early, active and late patterns, also known as NC patterns or scleroderma (SD) patterns,
in the captured NC images/image sequences. NC assessment is typically performed by
manual inspection, which is subjective, requires extensive experience, and is a time con-
suming task. Computerised automation can help to address these problems, yet relatively
little work is reported in the literature on such approaches. In this paper, we present a re-
view of work in computerised nailfold capillaroscopy. We discuss semi-automatic, image
and video based NC techniques, and in particular image enhancement methods, capillary
extraction algorithms and parameter measurement methods.

1 Introduction
Nailfold capillaroscopy (NC) is a non-invasive imaging technique employed to assess the
condition and morphology of capillaries in the nailfold. It is recognised as a reliable method
for observing micro blood vessel characteristics and as a standard method for diagnosing dis-
eases such as systemic sclerosis (SSc) [12], Raynaud’s phenomenon [5], and other connec-
tive tissue diseases such as dermatomyositis, antiphospholipid syndrome [7], and Sjögren’s
syndrome [30] which lead to morphological alterations of capillaries. Specific NC patterns
in SSc have been described in [21], and were later refined into early, active and late patterns
in [4].

Nailfold capillaroscopy is performed by observing capillaries in the nailfold area under a
microscope. A digital camera attached to the microscope enables the capillaries to be viewed
and recorded. Morphological features that are indicative in NC images include enlarged and
giant capillaries, haemorrhages (microbleeding), loss of capillaries, disorganisation of the
vascular array, and ramified/bushy capillaries [6].

NC assessment is typically performed by manual inspection, which is subjective, requires
extensive experience, and is a time consuming task. Even for manual measurement of capil-
laroscopy parameters, there is a demand for better image quality. For example, a projection

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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method for measuring capillaroscopic parameters was proposed in [18], where (negatives of)
capillary images were projected on tracing paper at 120x magnification for manual tracing
of the capillary outlines.

An accurate extraction of capillary information from the images becomes challenging
due to image noise, dust on lenses, micro-motion of fingers and air bubbles in the immersion
oil. Maybe because of these difficulties, relatively little work has been reported on comput-
erised NC image analysis.

Computerised NC techniques should help to address some of these issues. The employed
algorithms generally involve image enhancement, capillary extraction and capillary parame-
ter measurements. In the remainder of the paper, we discuss these steps for semi-automatic,
image based and video based approaches.

2 Nailfold Capillaroscopy

Capillaroscopy is an established technique to investigate micro-vascular involvement in var-
ious diseases. Examination of capillaries for finding a relation between conjunctival inflam-
mation and the presence of an inextricable knot of capillary loops was noted by Italian physi-
cian Giovanni Rasori around 200 years ago using a magnifying glass [5]. In 1911, Lombard
discovered that human skin capillaries can be observed using a microscope after the applica-
tion of a drop of immersion oil. Further to this, Weiss in 1916, was able to take a picture of
capillaries using a primordial camera. In 1925, Brown and O’Leary have shown the use of
capillaroscopy for observing capillary abnormalities in Raynaud’s phenomenon (RP) charac-
terised by Systemic Sclerosis (SSc). Nevertheless, capillaroscopy was then mostly neglected
for several decades until, in 1973, Maricq and LeRoy published the first paper describing
specific capillaroscopic patterns in SSc [21].

Following this, in a resurge of interest, various works on capillaroscopic patterns, em-
phasising mainly the relations between capillary patterns and particular diseases, were pub-
lished. At the same time, capillaroscopic image acquisition techniques and protocols im-
proved significantly. For acclimatisation, the subject is typically kept in the procedure room
for a minimum of 15 minutes, and the room temperature kept between 20 and 22◦C. The
nailfolds of several fingers are examined, and a drop of immersion oil used to improve the
image resolution [6]. Observation can be conducted using various instruments including
ophthalmoscopes, stereomicroscopes, photomicrography and video-capillaroscopy systems.
Dermoscopic instruments have also been used successfully for NC evaluation [14], however
the produced images are of lower contrast.

Morphological anomalies of nailfold capillaries are indicators of an underlying connec-
tive tissue disease or a scleroderma spectrum disorder. In [3], the need for capillaroscopy
in rheumatology for diagnosis of diseases is discussed. There are various situations where
capillaroscopy can prove to be effective and useful, including:

• First-line examination of patients with RP: in RP patients, even a single morphological
abnormality may alert the physician to the possibility of secondary RP.

• Transition from primary RP to secondary RP: it is suggested that patients with primary
RP undergo capillaroscopic analysis every 6 months to detect a possible transition to
secondary RP to early SSc [19].

• Differential diagnosis of scleroderma related conditions: (a) SSc, dermatomyositis and
mixed connective tissue diseases; (b) primary Sjögren’s syndrome.
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Figure 1: Sample SD patterns: (a) healthy patient, (b) early, (c) active, (d) late SD pattern.

• Early detection of severe microangiopathy in SSc, which can lead to digital ulceration
and necrosis.

• Therapy monitoring: visualisation of a single loop image can be helpful for therapy
monitoring.

• Assessment of microvascular involvement in other autoimmune rheumatic disorders:
systemic lupus erythematosus, psoriatic plaques.

Diagnosis of the above conditions is carried out by evaluating capillary morphology. In
healthy subjects, the observed pattern can be characterised by [12]:

• cutaneous capillaries at the nailfold are parallel to the skin surface, and their general
configuration is hairpin or u-shaped;

• uniform distribution of capillaries, although isolated morphological abnormalities may
be present;

• the number of capillaries in the distal row is 9 to 13 capillaries per mm;
• the diameter of the erythrocyte column ranges between 6.2 and 19 µm at the arteriolar

limb and between 8 and 20 µm at the venular limb;
and remain unchanged for many years.

The most important disease encountered underlying RP is systemic sclerosis (SSc) or
scleroderma. SSc is characterised by progressive skin and visceral organ fibrosis. Early diag-
nosis of scleroderma is only possible by examination of nailfold capillaries [3]. Researchers
have observed that 90% of patients with scleroderma show a typical NC pattern called scle-
roderma pattern or SD pattern. However, similar patterns are also observed in other closely
related disorders such as dermatomyositis, and mixed connective tissue diseases. Typical SD
patterns show enlargement of capillary loops, loss of capillaries, disruption of the capillary
bed and distortion and budding of capillaries.

The degree of these abnormalities gives an indication of the severity and progression of
diseases, and allows the classification into three SD patterns [4]:

• Early: few giant capillaries, few capillary haemorrhages, relatively well preserved
capillary distribution, no evident loss of capillaries.

• Active: frequent giant capillaries, frequent capillary haemorrhages, moderate loss of
capillaries with some avascular areas, mild disorganisation of the capillary architec-
ture, absent or some ramified capillaries.

• Late: irregular enlargement of the capillaries, few or absent giant capillaries, absence
of haemorrhages, severe loss of capillaries with large avascular areas, severe disorgan-
isation of the normal capillary array, frequent ramified/bushy capillaries.

These patterns are also used as reference patterns to evaluate other rheumatic diseases.
An SD capillary pattern is often present in dermatositis/polymyositis. Also, the presence of a
scleroderma capillary pattern among patients with Raynaud’s syndrome and undifferentiated
connective tissue disease is observed [23]. An abnormality in capillary length, capillary
width, and apical length and width is significant in patients who developed SSc.
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3 Semi-automatic NC analysis
Earlier NC automation systems required user interaction, with the majority of proposed
semi-automatic algorithms being dedicated to image enhancement and capillary extraction.
In [29], low contrast in NC images is addressed by producing a hand drawing, which is per-
formed using a magnifying projector and measurements are conducted in an area of 3× 3
mm, centred with respect to the midpoint of the hand-drawing. The Leitz Quantimet 570 c
image analysis system was used for image evaluation.

Clearly, drawing/tracing is a time consuming task and dependent on the individual’s skill.
In [17], an image processing application (Adobe Photoshop) was used for colour filtering and
grid display to measure lengths and other capillary parameters. Photoshop can also be used
for image enhancement but was not suitable for the automatic capillary parameter extraction.

In [22], an NC image is filtered by a low pass filter and subtracted from the original
image to remove lightning variations. Then, a threshold is applied to obtain a binary image
of capillaries and connectivity analysis is performed to reduce the noise in the image. Based
on a user defined region of interest, measurements are then taken for capillaries inside the
selected area. The employed image enhancement was found to be able to minimise various
types of noise present in the images. It was observed that computer aided analysis had
low inter-observer variability and provided a quantitative and sensitive method of assessing
capillary abnormalities.

In [15], captured NC images are enhanced by a simple transform where image contrast
is stretched based on the minimum and maximum intensity values. The user defines several
regions of interest (ROIs) which are then digitally magnified using interpolation. After pre-
processing, each ROI is marked as capillary or non-capillary by the user. Finally, gradient
information is used for capillary edge detection and a skeleton is extracted to measure the
various capillary parameters. This skeleton is divided into the venous limb, transitional
segment (loop of capillary) and arterial limb. Tortuosity is calculated as the ratio of skeleton
length to the shortest distance between the skeleton end points. Local limb diameters for
various points across the skeleton are calculated, and a final limb diameter is reported as the
average over these.

More recently, a semi-automatic method for capillary vessel tracking was suggested that
makes use of a non-directional graph technique for capillary extraction [27]. First, a point
on the capillary is located manually, and then the algorithm seeks for neighbouring points,
until the whole vessel is extracted. One seed point per capillary is taken as an input for graph
construction, although it is possible to select more than one point per capillary. For each
point, model identification is performed and based on the selected model a set of neighbour
vertices generated.

4 NC image analysis
In general, image based algorithms are focussed on image enhancement, capillary extraction
and capillary parameter measurement. An edge preserving smoothing and contrast enhanc-
ing filter was shown to be suitable for subsequent image analysis algorithms in [8] where
various filters were applied on NC images and their edge preserving and noise removing
ability were examined. In [11], bilateral filter and enhancer algorithms were found to lead
to better NC image quality compared to various other techniques. Nevertheless, even the
best techniques were found to be insufficient to deal with very poor quality images and with
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motion artefacts.
Image enhancement is typically followed by capillary extraction which is important for

measuring of capillary size and characterising its shape. Region growing based on pre-
defined conditions is widely used for this purpose. A set of conditions is checked for neigh-
bouring pixels and those neighbours that meet the conditions included in the capillary region.
Often, prior to capillary extraction, the image is binarised using thresholding and the bina-
rised images analysed in an iterative skeletonisation procedure [31, 32].

The results depend on the binarisation quality and are confounded by noise and image
quality. A Markov chain based edge detector may lead to improved performance as was
suggested in [13] where the authors argued that classical edge detectors are insufficient as
intensity changes continuously perpendicular to the capillaries. Consequently, a second order
derivative and the relation between pixel locations is used to search for the centre line of
vessels.

In [10], following image enhancement using bilateral enhancer, and prior to a capillary
skeleton extraction algorithm, the image is processed by a difference of Gaussian filter (DoG)
which addresses the problem of varying illumination and non-uniform background.

After extraction, capillary parameters are measured in a final step. A very simple ap-
proach for thickness analysis is to directly measure the thickness from the image [31, 32].
After vessel skeletonisation, the distance from the border to the median is used to evalu-
ate enlarged or giant capillaries. A somewhat more complex approach is described in [24].
Here, for each point of the skeleton image, thickness and curvature are calculated. Thickness
estimation is performed in pixel units whereas arc-chord ratio is used for curvature estima-
tion. A feature vector for the purpose of classification is created from the data obtained by
capillary analysis. An extension to thickness analysis is proposed in [16], where a cuticular
class is developed to consider the length and width of capillaries. The area is determined
by calculating the number of pixels contained within the capillary, while capillary length is
calculated by segmenting the image from base to tip and then counting the segments. The
mean capillary width is then calculated by the ratio of area and length.

Tortuosity analysis is carried out on whole vessels and not on the single curves connected
to each other, and describes how twisted a capillary is, how many turns it has etc. A simple
approach is presented in [16], where the change in gradient over a limb is considered to
calculate the tortuosity. If the tortuosity angle is greater than a threshold, then the capillary
is classified as tortuous. A more complex method for tortuosity measurement of nailfold
capillaries is proposed in [26] and returns a single numerical value which represents the
tortuosity of a vessel. Non-directed and directed graph analysis, curvature sign calculation
and arch-cord ratio is employed to derive the tortuosity index.

An approach for avascular area detection in NC images is presented in [25]. Histogram
analysis and classification techniques are employed, and after enhancement each image is
cut into horizontal slices of constant width. Vertical projection is then used for each slice
of an image; since capillaries appear dark in the image, local minima in the projection are
considered the capillary centre and this centre is used to find local maxima.

In all of the above approaches, individual capillaries are extracted and analysed. In [24,
31, 32], a classifier is used to characterise capillaries based on their properties. The parame-
ters for all capillaries in the image are then considered to classify image into control, early,
active or late groups.

In [9, 28], a holistic approach NC pattern identification is suggested. It is shown that,
using global texture analysis and with appropriate training of a classifier, SD patterns can be
recognised without having to extract individual capillaries.
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5 NC video analysis

Video NC can overcome motion artefacts and poor contrast of NC images. In [22], an en-
hancement algorithm and the use of lens filters as auxiliary filtering device are proposed.
Initially, 100 frames are averaged, filtered with a low pass filter and the filtered image then
subtracted from its original to remove lightning heterogeneity. To correct motion artefacts, a
linear feature detector is employed coupled with a Hough transform [2]. Here, the linear fea-
ture detector gives a skeletal image which is processed by the Hough transform to calculate
the transformation between two points in successive images.

Averaging of images is one of the main approaches suggested for noise suppression and
estimation of motion artefacts. Supplementary to this, averaging is also useful to address
the problem of temporal variability in capillaroscopic images [1]. At single snapshots, trans-
parent capillaries may look incomplete due to gaps in the flow of blood cells. Hence, the
complete vessel can be integrated from a sequence of successive video frames. It is observed
that combining the information from a video frame sequence by subtracting a multiple of the
standard deviation from the mean value for each pixel gives good results.

More recently, a local histogram equalisation and thresholding based approach for video
capillaroscopy is suggested in [20]. The green channel is processed by local and global
histogram equalisation methods in order to enhance the contrast between background and
capillaries. Thresholding is then performed on both globally equalised and locally equalised
images to produce a binary image that separates capillaries from the background. Globally
thresholded images preserve the major non-capillary area while local thresholding allows
for precise segmentation of capillaries. These images are then combined, while information
from multiple frames is combined to build a final binary image. A morphological (erosion-
based) algorithm is iteratively applied to thin the capillaries and extract their skeletons.

6 Conclusions

Nailfold capillaroscopy is a useful tool for the evaluation of scleroderma, Raynaud’s phe-
nomenon and other rheumatic diseases which lead to changes in capillary shape, organisation
and density. In this paper, we have summarised the literature on computer algorithms which
are used for NC image analysis. In general, NC automation algorithms start with an image
enhancement procedure followed by capillary extraction and parameter measurement. The
extraction step involves a skeletonisation algorithm or walking algorithm to extract capillar-
ies. Video based NC can give better image quality by exploiting temporal information and
redundancy for subsequent image analysis. Capillary length, tortuosity, thickness and avas-
cular area measurements are employed for identifying scleroderma patterns in NC images.
With recent development in computer algorithms, user interaction is not required for NC
image analysis and algorithms are able to overcome noise and contrast related issues. Fur-
thermore, automation of parameter measurement may reduce errors in diagnosis. The field
of NC image analysis is a relatively young one, and consequently there is still much scope
for further research. In particular, more robust algorithms are required which are capable of
coping with the large range of image quality encountered in nailfold capillaroscopy.
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Abstract 

Our research aims to investigate retinal image segmentation approaches based on 

textons as they provide a compact description of texture that can be learnt from a 

training set. We propose a new filter bank which is designed for feature extraction. 

The K-means clustering algorithm is adopted for texton generation. We back project 

textons onto the ground truth in a machine learning stage to identify the 

corresponding vessel textons and these are subsequently used to identify vessels in 

the test set. To verify that these unified textons provide a general tool that can be 

used for vessel segmentation, we perform experiments on three different data sets, 

generating textons from the one set, and testing on another two data sets. Our results 

show the method outperforms other published work, and reveal that it is possible to 

train unified textons for retinal vessel segmentation.  

1 Introduction 

Vessel segmentation plays an important role in early automatic detection of diabetic 

retinopathy, it also contributes to other clinical purposes in computer aided diagnostics and 

treatments such as glaucoma [1], hypertension, obesity, arteriosclerosis and retinal artery 

occlusion by measuring vessel diameter [2][3], and computer-assisted laser surgery [4]. 

The previous methods or algorithms that have been presented for retinal vessel 

segmentation fall into three categories: filtering-based methods, trace-based methods and 

classifier-based methods. In filter-based research, the classic matched filter (MF) 

introduced by Chaudhuri et al. [5] is a popular approach. Because of its advantages of 

simplicity and effectiveness, the MF has been applied by other researchers for a long time. 

However, the classic MF has a limitation that it's hard to detect small branches of blood 

vessels. Given its advantages and limitations, MF attracted extensive research in 

applications of blood vessel detection. For instance: Gang et al. [6] studied the Gaussian 

function model used by Chaudhuri et al. [5] further and an amplitude-modified second-

order Gaussian filter is proposed. They optimized the parameters of the matched filter via 

mathematical analysis and experimental simulation. Bob and Lin et al. [7] proposed a 

novel extension of the MF approach which is named MF-FDOG to distinguish vessel from 

Locating blood vessels in retinal images 
using unified Textons 

Lei Zhang
1
 

Lei.zhang@uea.ac.uk 

Mark Fisher
1
  

http://www2.cmp.uea.ac.uk/~mhf/ 

Wenjia Wang
1
 

Wenjia.Wang@uea.ac.uk 
 

1
 School of Computing Sciences, 

University of East Anglia, UK 

 

213



2 ZHANG, FISHER, WANG: LOCATING BLOOD VESSELS…  

 

non-vessel step edges.  It enhances the function of the MF that discriminates vessel 

structure from non-vessel structure and detects the small branches of vessels which are 

miss-detected by a basic MF. Tracking methods proceed by first determining start points 

within the incomplete global skeleton of blood vessels and then track the vessels from 

those points according to some local image features. Echevarria and Miller [8] propose a 

method that utilizes the level sets concept to remove the noise and use the fast marching 

method [19] to trace vessels. The critical factor of classifier-based retinal segmentation 

methods is the selection of a classifier. Diego Marín et al. [9] adopt a neural network (NN) 

to achieve pixel classification task and in [10] a Bayesian classifier with class-conditional 

probability density functions derived from a  Gaussian mixture model (GMM) was adopted 

to identify whether pixels are vessel or not. 

Although automatic segmentation of the blood vessel networks has been studied widely, it 

is still a big challenge and retinal vessel segmentation remains a focus for ongoing 

research. In our experiments, we focus on texture-based segmentation techniques known as 

textons as only a few authors [18] have investigated this approach for retinal vessel 

segmentation and it provides an approach for learning texture features which is founded in 

human perception.  

Texton-based approaches have been a significant branch of texture analysis process since 

the term texton was introduced by Julesz in the 1980’s [11]. The name ‘Texton’ was 

defined as an element which can represent a particular density of local image features. 

Leung and Malik [12] described an operational definition of textons using a framework 

that enables most  textures to be decomposed into a small number of vectors, which can be 

modelled by calculating cluster centres from a filter response space. The motivation of our 

experiment comes from Varma and Zisserman’s [13] work which achieved success in 

classifying a range of natural texture patterns. In our experiment, we proposed a novel 

texton based retinal segmentation method. Moreover, to pursue an automatic vessel 

segmentation method that doesn’t require extensive retraining and is robust to noise and 

variation in image capture, we performed experiments on retinal images captured at three 

different hospitals. Our analysis verified that textons trained on one data set can be reused 

on other data sets. The rest of the paper is organized as follows. Our proposed method is 

described and explained in section 2. Section 3 presents our experimental results and 

conclusions and further work are discussed in the final section. 

2 Method 

2.1 Materials 

Our initial experiments were carried out using the STARE [14] and DRIVE [15] datasets 

and subsequently evaluated on an additional data set from Manchester Eye Hospital. The 

images of the STARE dataset were stored as PPM format and digitized to a size of 

700×605. The dataset contains manual segmented ground truth results made by two 

observers. The first set of manual segmentation results is used as ground truth in our 

experiment.  The DRIVE dataset contains 40 TIFF formatted RGB retinal images with a 

size of 565×584 pixels. Each dataset comprises images of which have been hand labelled 

by two pathologists. In our experiment, we chose the first observer’s performance as 

ground truth. To evaluate the approach we test on another data set comprising 20 images 

collected from Manchester Eye Hopital. These are also hand labelled by a pathologist.  
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In our experiment, the performance is evaluated in terms of sensitivity, specificity, and 

accuracy. 

2.2 Filer bank MR11 

We designed a new filter bank for the dissection of bar structures (vessels). The vessels are 

modelled as local line or bar structure objects, and we focus on extracting this single object 

(vessels) from the background instead of classifying multiple objects. So it's not necessary 

to adopt the first-order derivative Gaussian filter but instead second-order derivative 

Gaussian filters with three scales (scale (σ x, σ y) ={(1,3), (1.5,4.5),(2,6)}) are applied. 

The first 3 rows in Fig. 1 illustrate these filters.  To address the vessels’ reflection problem, 

we use the Difference of Gaussians (DoG) filter response. Equation (1) defines a general 

Gaussian function. The offset parameter δ in Equation (2) represents the distance between 

the centers of the Gaussian kernels in a DoG filter 

         ����, �� 	 

√�
� �

���������� �
                                      (1)                                                           

������, �� 	 ����, �� � ���� � �, ��                         (2) 

In practice, this offset parameter is the centre position of the vessel over a cross section, 

the values in our experiments, chosen as 0.5, 0.75 and 1 pixels are based on values of σ.We 

also add a matched filter as a specific bar detector. For the parameters σ and L we choose 

σ equals 1, 1.5, 2 pixels respectively and   L equals 9 which was deemed as an optimized 

value in [5].  σ is the standard deviation which defines the spread of the intensity  profile, 

and L is the length of the vessel segment that has the same orientation. The second-order 

derivative Gaussian filter (2DG), DoG and Matched filer (MF) are anisotropic filters. To 

detect vessels in different orientations, filter kernels are rotated over 12 orientations. The 

last 2 isotropic filter categories (109, 100) are Gaussian and LoG filters, we choose the 

same parameters for these filters   as their equivalents in MR8 [13]. The filter bank is 

visualized in Figure 1.    

 

 

 

 

 

 

 

 

 

 

Figure 1.  New Filter bank MR11 

2.3 Generating the Texton 

In our experiment, the Texton computing procedure comprises two primary stages 

(training and testing): At the training stage, we choose 10 images as a training sample. We 

apply the MR11 filter bank on this training sample to get the 11 filter responses, these 11 

responses are aggregated into a single data cell. The texton is generated by applying a k-
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means algorithm on the filter responses. The flowchart of this algorithm is illustrated in 

Fig.2. Given the structures within the retinal image, normally each scan consists of the 

background, the vessels, the optic disc (OD), and other pathologic units (particularly, 

existing in the image of patient). In our experiment, the total number of learnt textons is 

k=5, where k is the cluster centre number.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Flowchart of Texton generation algorithm 

2.4 Indicating vessel Texton and Segmentation  

After the texton generation stage, each texton is given a unique ID, and the corresponding 

texton maps obtained by using every texton. Although we now have the 5 textons, the 

system can't recognize which texton membership belongs to vessels and which represent 

non-vessels (background); for this we use the ground-truth. In order to get vessel texton, 

all texton ID are then sorted by ID and the texton responses are back-projected into the 

training set, those which have the maximal number of corresponding membership (pixels) 

is removed from the list, since this indicates the background. The rest of textons are used 

in training to identify optimized combinations that are subsequently used for vessel 

detection. For instance, we got four texton ID which are 1,2,3,4 respectively. There are 11 

combinations of these four texton relative memberships (tmap), namely, (1,2), (1,3), (1,4), 

(2,3), (2,4), (3,4), (1,2,3), (1,2,4), (1,3,4), (2,3,4) and (1,2,3,4). Every combination is 

evaluated by calculating the accuracy compared to the ground truth. The combination with 

highest accuracy is defined as the vessel texton.  Both these textons and vessels texton ID 

are stored.  These textons are used in the test stage. In testing, firstly, the same filter bank 

MR11 is applied on a novel image and 11 responses are generated. Next, the texton data 

are assigned to the responses and the corresponding texton memberships are generated by 

calculating the minimal Euclidean distance from the vectors of responses assigned to the 

centres of textons. Hence we label each filter response with the corresponding texton and 

finally, the segmentation is completed by combining the vessel texton ID memberships. 
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3 Experiment results  

Firstly the proposed method was tested and evaluated on both STARE and DRIVE 

experimental data sets. In order to quantify the performance of the proposed approach, the 

resulting segmentation is compared to its corresponding ground truth. The ground truth is 

obtained by manual creation of a vessel mask in which all vessel pixels are set to one and 

all non-vessel pixels are set to zero. Our algorithm was evaluated in terms of sensitivity, 

specificity and accuracy. On the STARE dataset, average specificity reaches 0.9643 with 

0.7515 sensitivity, the accuracy is 0.9506.  The terms of specificity, sensitivity and 

accuracy for the DRIVE dataset are 0.9831, 0.7167, and 0.9591 respectively.  

Method 
Performance Results 

database Sensitivity Specificity Accuracy 

Our method STARE 0.7515 0.9643                              0.9506 

Hoover[14] STARE 0.6751 0.9567 0.9275 

Soares [10] STARE 0.7165 0.9748 0.9480 

Diego [9] STARE 0.6944 0.9819 0.9526 

Staal [15] STARE 0.6970 0.9810 0.9516 

Zhang [7] STARE 0.7177 0.9753 0.9484 

Our method DRIVE 0.7167 0.9831                              0.9591 

Mendonca [17] DRIVE 0.7344 0.9764 0.9425 

Soares  [10] DRIVE 0.7283 0.9788 0.9466 

Zana [16] DRIVE 0.6696 0.9769 0.9377 

Staal [15] DRIVE 0.7194 0.9773 0.9441 

Zhang[7] DRIVE 0.7120 0.9724 0.9382 

Table 1: comparative results on stare database and drive database  

In order to compare our approach to other retinal vessel segmentation algorithms, the 

average sensitivity, specificity and accuracy were used as measures of performance. Table 

1 shows comparative results confirming that the performance compares well with the best 

published results on both datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2: Performance results on DRIVE data set and our new data set using STARE texton 

To demonstrate that  texton  trained from one data set can be reused on the other data sets 

we train on data from STARE and test on images from DRIVE (D*) and also images 

collected at Manchester Eye Hospital (N*) Table 2 illustrates the corresponding sensitivity, 

specificity and accuracy for each test image. The results show that both D* and N* have 

competitive performance compare with the other proposed methods in Table 1. 

Image Sensitivity Specificity Accuracy 

 D* N* D* N* D* N* 

01test 0.8539 0.8037 0.9660 0.9327 0.9560 0.9169 

02test 0.7938 0.7618 0.9758 0.9815 0.9571 0.9657 

03test 0.7212 0.7767 0.9760 0.9569 0.9506 0.9383 

04test 0.7806 0.8098 0.9683 0.9488 0.9510 0.9364 

05test 0.7223 0.7902 0.9839 0.9556 0.9594 0.9355 

06test 0.7055 0.8169 0.9814 0.9473 0.9545 0.9357 

07test 0.7578 0.7935 0.9645 0.9463 0.9456 0.9337 

08test 0.7082 0.8670 0.9676 0.9647 0.9453 0.9567 

09test 0.7232 0.8496 0.9811 0.9527 0.9602 0.9424 

10test 0.7529 0.7460 0.9763 0.9509 0.9579 0.9303 

11test 0.7631 0.8326 0.9668 0.9580 0.9486 0.9466 

12test 0.7896 0.8387 0.9687 0.9505 0.9532 0.9413 

13test 0.7594 0.6961 0.9696 0.9572 0.9490 0.9284 

14test 0.8230 0.8094 0.9593 0.9542 0.9483 0.9403 

15test 0.8323 0.7852 0.9513 0.9638 0.9428 0.9494 

16test 0.8063 0.8297 0.9730 0.9423 0.9580 0.9327 

17test 0.7786 0.7828 0.9662 0.9433 0.9504 0.9293 

18test 0.8273 0.7378 0.9682 0.9671 0.9570 0.9443 

19test 0.8742 0.7283 0.9742 0.9794 0.9659 0.9549 

20test 0.8176 0.7461 0.9743 0.9581 0.9628 0.9356 

Average 0.7795 0.7901 0.9706 0.9556 0.9537 0.9397 
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4 Conclusion 

In this paper, a novel texton-based segmentation method is proposed.  A new filter bank 

MR11 was designed for vessel extraction considering the structural properties of retinal 

vessels. Experiments show that our proposed method outperforms some state of the art 

methods, while the performance compares well with the best published results on DRIVE 

and STARE datasets. On the STARE dataset, average specificity reaches 0.9643 with 

0.7515 sensitivity, the accuracy is 0.9506.  The terms of specificity, sensitivity and accuracy 

for the DRIVE dataset are 0.9831, 0.7167, and 0.9591 respectively. Meanwhile, our 

comparative results prove that once generated the unified textons can be applied on the 

other data sets for the purpose of vessel segmentation. This suggests that the textons are 

successfully capturing vessel texture and the framework for learning and selecting textons is 

robust. We believe that our proposed texton-based method demonstrates potential 

improvements and achieves more accurate segmentation results by optimizing the 

parameters of the filter bank, introducing a new filter (Gabor) and employing a sort process 

(post clustering) that finds the best combination of textons for our application.   
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Abstract

Extracting histological parameters, especially macular pigment, from multispectral
images of the ocular fundus is a potential technique for the assessment of age-related
macular degeneration. Such approaches make use of a Monte Carlo radiation transport
model relating spectral reflectance of the tissue to tissue histology. We develop a proba-
bilistic surrogate for this computationally expensive physicalmodel using Gaussian pro-
cesses (GP). Further, we present a Bayesian inversion algorithm that uses the surrogate
model to recover model input parameters. This methodology is tested both on synthetic
data generated from the Monte Carlo model and on real image data. It is shown that
our inversion methods can recover macular pigment concentrations in human retina with
good accuracy and the spatial distribution is consistent with known physiology.

1 Introduction
A reduction in the quantity of macular pigment (MP) in the retina is thought to be posi-
tively correlated to the onset of Age-related Macular Degeneration (AMD), the most com-
mon cause of blindness in the Western world. There are no established objective assessment

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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methods. Research techniques compare a spectrum measured at the fovea (where the macular
pigments are present) with a background measurement from nearby and deduce the macular
pigment optical density (MPOD) from the difference between the two measurements. An
important unresolved problem is to compensate for the effect of scattering by ocular tissues
and of absorption by other pigments (melanins, haemoglobins) present in the fovea region.

In [4], we proposed a solution which involves the use of a computational forward model
that predicts spectral reflectance for a histologically plausible set of retinal composition pa-
rameters. The model is parameterised by the quantities of pigments (MP, melanin in retinal
pigment epithelium and choroid, haemoglobins in retina and choroid) and assumes constant
tissue thickness and scattering properties derived from values found in the literature [2]. The
ability to isolate the effect of MP on tissue reflectance depends on being able to spectrally
separate MP from other pigments present in the sample. It has been shown [4] that this sepa-
ration can be achieved optimally through measurements at six wavelengths, namely 507nm,
525nm, 552nm, 585nm, 596nm and 610nm. Image data is acquired at these wavelengths and
the images are divided pixel-wise by the image at 610nm to normalise for uneven illumina-
tion to form so-called image quotients.MP concentration can then be estimated from this set
of spectral measurements by inverting the forward model.

The forward model is constructed by means of a Monte Carlo-based simulation of light
transport in the retinal tissue. Previous attempts to inverting such a mdoel have adopted a
lookup-table approach to compute MP values by interpolation [4]. This approach is sensitive
to image quality and underlying approximations in the model, and we are driven towards
a Bayesian inverse problem approach in order to subvert these difficulties. However, the
Monte Carlo simulation is costly and unsuitable for iterative inversion, which makes a robust
solution scheme for the inverse problem very challenging. A solution that could circumvent
this difficulty is to approximate the forward model by a computationally cheap surrogate
model.

We have employed Gaussian Process modelling (GP) [3] to approximate the functional
relationship between the histological parameters and the spectral reflectance. This surrogate
model is constructed using a set of parameter-reflectance pairs generated from the physical
forward model to learn the model’s parametrised mean and covariance functions. Within
the GP framework, the approximate forward model can be formulated analytically and its
computation is much more efficient. Moreover, the probabilistic nature of GPs allows us to
naturally adopt a Bayesian approach to our inverse problem providing a maximum a poste-
riori (MAP) estimate of the model parameters from reflectance measurements.

We first provide a description of our methodology in Sect. 2. In Sect. 3, we validate our
approach with tests on synthetic and real data. We conclude with a discussion in Sect. 4.

2 Methodology
Our approach to estimate macular pigment has three major ingredients: 1) a surrogate ap-
proximation of the forward model using GPss; 2) a Bayesian inverse model for estimating the
model input parameters; and 3) a spatial regularization scheme for the estimation of macular
pigment across pixels.

Mathematically, a GP is formulated as a probability distribution of functions f : x 7−→ y
with input x ∈ℜdx and output y ∈ℜdy . This distribution is characterized by a mean function
m(x) ∈ ℜdy and a covariance function cov(x1,x2;y1,y2). The mean function is modelled
by m(x) = Bᵀh(x) where h ∈ℜK is a multivariate regression function and B ∈ℜK×dy is its
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regression coefficient matrix. The covariance function cov(x1,x2,y1,y2) is approximated by
a product of output covariance Σ(y1,y2) ∈ ℜdy×dy and input covariance c(x1,x2) ∈ ℜdx×dx

specified by c(x1,x2) = exp{−(x1−x2)
ᵀdiag(r)(x1−x2)}with r∈ℜdx as a positive rough-

ness parameter vector. Note that B, r, and Σ are the hyper-parameters that specify a GP.
To train a Gaussian process model, a set of inputs S = {x1, ...,xn} is first selected,

and the corresponding output of each input in the set is computed by running the for-
ward model. The set of outputs D = (f(x1) · · · f(xn))

ᵀ ∈ ℜn×dy can be seen as the obser-
vations from which we infer the underlying GP. The hyperparameters B, r and Σ are esti-

mated by maximizing the likelihood p(D|B,r,Σ) ∝ exp(− 1
2 tr[Σ−1(D−HB)ᵀA−1(D−HB)])
(2π)ndy/2|A|dy/2|Σ|n/2 where

Hᵀ = (h(x1) · · ·h(xn)) ∈ ℜK×n and A ∈ ℜn×n with Ai j = c(xi,x j). To reduce the number
of hyperparameters to be estimated, B and Σ in the likelihood are both marginalised out:
p(r|D) =

∫
dBdΣ · p(D|B,r,Σ) · p(r) · p(Σ) with a log-logistic prior on r = ∏dx

i=1(1+ r2
i )
−1

and a Jeffreys-type prior on Σ ∝ |Σ|−
dy+1

2 . Let r̂ denote the estimate of r that maximize
p(r|D) and note that r̂ is the only hyperparameter that specifies the GP.

For any input x 6∈ S, the corresponding output f(x) is given in terms of a predictive dis-
tribution as p(f(x)) = Tdy(m̂, Γ̂,n−K), which is a multivariate student distribution with its
location vector m̂, scale matrix Γ̂ and degrees of freedom equal to n−K. For the expression
of m̂(x) and Γ̂(x), we refer to [1] but note that the evaluation of these expressions does use
the training sets (S,D), the multivariate regression function h(·) and the input covariance
function c(·, ·; r̂) which is specified by the hyperparameter r̂.

Let yi denote the multispectral image data. It is assumed that yi is the observed model
output y with noise contamination. Thus yi = f(x) + ε where ε is assumed to be i.i.d.
multivariate Gaussian noise with zero mean and spatially homogeneous error covariance
R. This gives rise to our definition of the likelihood as p(yi|f,x) ∝ exp

{
− 1

2 εᵀR−1ε)
}
.

However, the forward model f(x) is now approximated by a GP which is represented by
a probability distribution of f, i.e. p(f). Therefore, f in the likelihood is just a realiza-
tion of the GP p(f) and needs to be integrated out. The resulting likelihood is obtained
by p(x|yi) ∝

∫
df · p(yi|f,x) · p(f). The GP p(f) can be seen as a prior on f. A GP based

inversion maximizes the posterior distribution p(x|yi). Given x, p(f(x)) is a Student distri-
bution over f(x). Thus, we apply the fact that the student distribution can be represented as
an infinite mixture of scaled Gaussian distribution. The resulting posterior is now given by
p(x|yi) ∝ p(x)

∫
dλG (λ ,ν/2,ν/2) ·N (yi,m̂(x),R+λ Γ̂(x)) where ν = n - K. The gamma

function here is strongly localized due to large ν value. Note that the number of training data
n and the number of regression functions K usually differ by two order of magnitudes. Thus,
the computational cost for numerical integration over λ is negligible.

As it is assumed that the parameters vary smoothly across all pixels in the spatial domain
s ∈ I , the parameter field x(I ) needs to be estimated jointly from the image yi(I ). The
joint posterior is given by p(x(I )|yi(I )) = ∏s p(x(s)|yi(s)) · p(x(I )). The prior p(x(I ))
accounts for the smooth variation of each x-component in I and is specified by a Gaussian
Markov random field for each x-component with its regularization parameter ξ :

p(x(I )) ∝
dx

∏
i=1

ξ−|S |i · exp

(
−∑s∈S ∑m∈Ns (xi(m)− xi(s))2

2ξ 2
i

)
,

where Ns defines a neighbourhood of s in S . Here, such a neighbourhood represents the 8
adjacent pixels to every individual pixel.
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Figure 1: Plot of simulated vs emulated
spectral reflectance quotients for the Monte
Carlo model. Error bars indicate twice stan-
dard deviation of predictive error
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Figure 2: Plot of estimated vs true macu-
lar pigment concentration in the retina. Dots
and error bars denote the mean twice stan-
dard deviations of the estimates from inde-
pendently repeated observations.

3 Numerical Validation
In this work, we consider only three input parameters of the model: macular pigment con-
centration in retina, CMP, melanin concentration in retina, CRH , haemoglobin concentration
in RPE, CRM . Other parameters such as haemoglobin and melanin in choroid, are set to
typical values. The output is a five dimensional vector of image quotients.

To train a GP emulator for the Monte Carlo model, a set of 100 input-output pairs are gen-
erated by running the simulation for 100 input parameter vectors which are sampled from
the three-dimensional input space using a Latin hypercube algorithm that maximizes the
Euclidean distance between these input parameters. Further, the pivoted Cholesky decom-
position is applied to detect those vectors that are not sufficiently far apart. After training,
50 input vectors are sampled randomly and their corresponding output vectors are simu-
lated. The predictive mean and standard deviation of their emulator output are computed and
compared in Fig. 1. It is seen that most of the mean predictions are very close to the true
values. Those that clearly deviate are within of two standard deviations of the prediction
error. However, the level of prediction error is somewhat high (about 5%).

Next, we compare the estimated macular pigment concentration with its true value. The
other two variable input parameters are not further investigated. For each of 7 CMP-values
evenly sampled from its normal range, we have generated 10 repeated observations by adding
10 i.i.d Gaussian noise with σ2 = 0.01 to the true value. The mean and its twice standard
deviation of those CMP-estimates are displayed in Fig. 2. The large error bars indicate that
the estimate of CMP from a single observation is prone to random fluctuation. In practice,
however, one can use the observation on neighbouring pixels of the same image if we assume
CMP is constant. Equivalently, we estimate CMP jointly for all pixels on a retinal image while
imposing some smoothness prior on the parametric map of CMP. In this work, a Markov
random field prior is imposed on parameter maps.

The algorithm to jointly estimate the parameters across all pixels is tested on a set of ar-
tificial images of size 100 × 100, with an uniform distribution of all histological parameters
except for that of macular pigment. The spatial distribution of CMP is modeled by a super-
position of an uniform background concentration with CMP = 0.14 and a two-dimensional
isotropic Gaussian with its centre at (50,50) and its full width at half maximum around 10
pixels. The Gaussian is scaled so that its peak value is about CMP = 0.48. Also, we add i.i.d
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Figure 3: Numerical experiment with syn-
thetic data: the true macular pigment field
(upper panel) and the estimated macular pig-
ment field (lower panel)
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Figure 4: Contour plots of the estimated ma-
cular pigment field for two real images from
two subjects.

Gaussian noise with noise level σ2 = 0.01 to the signal at each pixel. The results are shown
in Fig. 3. It can be seen that the estimated CMPs show a spatial distribution very close to the
true one. Moreover, both the baseline and peak CMP values are estimated with good accu-
racy, not to mention that all parameter fields are initialized as a constant field with its value
randomly chosen from the corresponding permissible range. On average, the optimization
procedure is terminated after 500 iterations.

Finally, we apply the algorithm to 2 real retinal images of 2 healthy subjects. For each
image, a ROI of size 140 × 140 is selected so that the foveal region is located in the middle
of the image. The estimated CMP maps are displayed in Fig. 4. It can be seen that there is
a distinct peak of CMP in the foveal area for each subject, with CMP = 0.39 (upper panel)
and CMP = 0.45 (lower panel). It is believed that the estimated peak values are reliable.
This is because we also observe that the baseline CMP is very small (about 0.05) in both
cases. In addition, it is clear to see a rapid decrease of CMP from its peak to baseline. Both
observations are consistent with known physiology.

4 Discussion
We have proposed and tested a surrogate model based inversion method for analysing med-
ical images. The numerical experiments in Sect. 3 demonstrate that our methodology is
feasible and the reconstructed macular pigment map is consistent with known physiology. In
the following, we discuss issues to be addressed in follow-up work.

Our surrogate model for the Monte Carlo model needs to be improved with regards to
the large uncertainty observed (high prediction error). There are two possible explanations:
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1) The output of a Monte Carlo model is, in principle, stochastic whereas the GP emulator
method is developed for approximating a deterministic model; 2) due to the ill-conditioned
nature of the problem, only a limited amount of training data can be used. In this work,
those training data are generated by the Latin hypercube algorithm which does not take into
account the model itself. Clearly, the optimal choice of training data is model dependent.
Therefore, a more sophisticated algorithm needs to be developed.

In this work, we predict the model output vector of length dy using the optimized GP for
each pixel individually. In fact, we can also predict the multivariate output field jointly. This
can further reduce the prediction error as the former approach can be considered to be an
approximation of the latter by setting all off-diagonal blocks of size dy×dy in its predictive
covariance matrix to zero. However, the resulting covariance matrix is too large to be dealt
with in respect of the computing power. On the other hand, this matrix could be a low-rank
matrix as the parameter field is smooth. Therefore, low-rank approximation techniques could
be used here, in conjunction with the surrogate approximation method.

Applications of GPs as surrogate model in medical image analysis can go beyond the
model inversion problem which we have explored in this paper. A surrogate approximation
approach could also be useful in optimal design of experiments. For example, we can use the
surrogate model to determine the optimal set of wavelengths for multispectral imaging. For
Gaussian processes, some theoretical results have been developed in the area of experimental
design. More importantly, Gaussian processes can be used for simultaneously approximating
a forward model and accounting for model error. This is potentially useful because the
forward model used in a inverse problem may not adequately describe the full complexity
and variability of the problem. GPs can include such information statistically.
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Abstract
It is believed there are between 1000 to 2000 skin conditions of which 20% are dif-

ficult to diagnose. An intelligent diagnosing system not only helps patients with no or
little access to health services, but also benefits typical general practitioners who have
received minimal dermatology training. In this paper, we introduce a challenging dataset
containing 2309 images from 44 different skin conditions. We employed 361 “Amazon
Mechanical Turk” workers to answer some perceptual questions that represent the hu-
man understanding of these images. We present a novel random forest based “Human
in the Loop” framework to efficiently fuse images’ visual data and workers’ answers for
a better classification performance. We also suggest a new method to select the best se-
quence of questions to ask from the workers. Experiments demonstrate that this solution
enhances classification accuracies, while minimising human unnecessary involvement.

1 Introduction
A recent comprehensive assessment of healthcare needs for skin conditions in the UK [6]
suggests that 54% of the population experience a skin condition in a given twelve month
period, and around 23% to 33% of the population have a skin problem that can benefit
from medical care at any one time. The UK healthcare system relies on primary care as
gatekeepers but typical general practitioners (GPs) paradoxically get minimal training in
dermatology. Clearly, there is an acute skill shortage to meet the healthcare needs. A system
that could automatically recognise at least life threatening skin conditions would be ideal.
However, the state-of-the-art automatic computer techniques are still far from satisfying. A
more realistic way is to utilise the human knowledge by including the human in the decision-
making loop. This boosts accuracy of such system, and also helps with the issue of trust and
public alienation towards autonomous technologies.

To realise this system, there are several core problems, which need to be tackled. Firstly,
how to efficiently utilise these users provided information? Secondly, how to utilise these
information in an online fashion? Thirdly, how to reduce the user workload? Finally, a rela-
tively large scale dataset is necessary to evaluate the algorithm. In this work, we introduce a
novel dataset1 containing images and user provided information of various skin conditions.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1We have plans to release this dataset online in the future.
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We also introduce a novel human in the loop framework based on random forests that effi-
ciently fuses the two sources of information essential in solving this problem of fine-grained
visual object classification. We emphasise human interactions with the system provides in-
valuable information that refine our recognition output but the burden on the user is kept to
minimum by our ranking technique.

2 Related Work
There exists a fairly limited literature on “human in the loop” philosophy. The most similar
work to ours may be [2], which propose to use a Bayesian framework to combine visual
information and user provided answers for bird species recognition. However, it seems their
Bayesian method struggles to fuse the two sources of visual and high-level human informa-
tion, as each component in the framework is estimated separately and put together subse-
quently to form a recognition. This kind of late fusion does not consider the interactions
between visual features and user answers. More importantly at each Question and Answer
step, their Bayesian framework only considers a limited number of user answers, and there
is no confident way to know when to stop asking new questions. In contrast, our proposed
solution takes into account a full set of answers containing both user provided and automat-
ically predicted answers. This allows the user to answer as much, or as little as she desires.
Furthermore, their Bayesian solution could become computationally expensive. There are
limited sensible assumptions to make it tractable, and this leads to its inflexibility.

Despite technological advancements, teledermatology (TD) and computer aided diag-
nosis (CAD) have had limited success. Most research in applying CAD to dermatology has
been limited to melanoma conditions and using dermatoscopic images [7]. Surprisingly little
research exists in recognition of ordinary photographical images. Wide availability of smart
phone devices have spurt extensive activities to exploit these advancements. A dermatology-
themed apps survey in [5] has come to conclusion that ubiquitous mobile computing offers
new possibilities for help with patient care; however, all existing systems follow the tradi-
tional TD paradigm, and none have intelligent CAD capabilities.

One of few exceptions to the above is [8] that presents an interactive skin lesion recog-
nition system based on a human in the loop visual recognition technology. In the paper,
computer vision algorithms and models of human responses to a series of simple percep-
tual questions are combined together to achieve acceptable recognition rates. The proposed
method utilises a similar Bayesian framework as in [2] with the same shortcomings, we dis-
cussed previously. They introduce a dermatology Q&A bank consisting of 21 questions and
over 100 answers. However, their two “first” and “second” datasets contain only 3 and 7 skin
conditions respectively, in contrast to our 44 classes. Moreover, their dataset includes only
796 images, in comparison to our 2309 skin condition images.

3 Implementation

3.1 Random Forest for Classification
Visual Representation: Image representation plays an important role in the quality of

any classification solution. We have only utilised one feature in this work to represent visual
information of each image but we believe that a combination of more features may improve
accuracy of our algorithm. Our solution benefits from a visual feature that was proved to be
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very effective in similar datasets [9]. Pyramid Histogram of Visual Words (PHOW) [11] with
specific parametrisation was extracted to form visual feature vectors of 1024 dimensions.

Nodes Split Function: Kernel PCA [10] is a suitable dimension reduction method to get
a more compact representation for any chosen feature channel. We use kernel PCA to reduce
our PHOW feature to a fixed low dimension.

User Answer Utilisation: We also utilise user provided information, which is in form
of answers to perceptual questions, in our classification algorithm. These answers can be
regarded as presence of tags2 in each image. The importance of these answers become ap-
parent when visual features fail to capture the complexity present in visually similar images.
User provided answers can be used to build feature vectors with each element representing
the presence of a tag. Instead of only 0 and 1 values, users’ answers to the binary questions
can be quantified by a certainty value, i.e. guessing, definitely, probably. These certainty val-
ues allow the framework to assign more weights to more confident answers. Each element in
the vector is therefore set as a discrete probability between 0 to 1 representing the probability
of a tag belonging to an image. Any positive answer has a probability value above 0.5, and
any negative one is below 0.5. Table 3 shows these values.

Classification Method: Now we have defined methods to represent each image by a
visual feature vector concatenated with its user answers vector. These answers vectors have
a dimension of 37 representing the 37 questions in table 1. These concatenated vectors are
used by a bootstrap aggregating (bagging) ensemble algorithm that trains 300 random trees.
The information gain, calculated based on class labels of the training images, is used to
select the best split function. Leaf nodes store a normalised probability distribution of the
occurrence of all possible classes in the dataset. A common voting technique classifies the
image.

3.2 Random Forest for Automatic Answer Prediction

The performance boost by the human in the loop is only valuable if the burden on the user
is kept to the minimum. As the previous random forest is trained both on visual information
and user provided answers, it becomes useless when the user answers only a subset of ques-
tions. We need to automatically predict responses for those unanswered questions. Unlike
previous methods [2, 8], we treat this as an annotation problem where predicting presence
of tags is the same as predicting answers. Not all automatic annotations will be perfect.
Therefore, the least confidently predicted tags will be asked directly from the user. Sorting
the prediction probability of tags in reverse order provides the algorithm with a ranking list
of most important questions to ask from users.

[4] propose an interesting method that uses random forest for tag prediction. They use tag
information instead of class label information to guide the generation of random trees. Thus,
correlation among different tags is implicitly modelled. They also suggest two new concepts
“Semantic Nearest Neighbour” and “Semantic Similarity Measure” that indicate “which”
and “how many times” training images fall on the same leaf node with the query image.
Based on their approach, we can automatically predict the existence of all possible tags or
answer all questions. These predicted tags will be associated with a probability indicating
how likely they are about to occur. More specifically, we denote I the query image and Q the
probabilities of assigning tags. Let Ii represent I’s ith semantic neighbour. Its count value is
denoted as ci. The ground truth tags of Ii is denoted as Ti. Suppose there are M tags in total,

2We will use tag(s) and answer(s) interchangeably in the rest of this paper.
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Table 1: Dermatology Dataset Questions
Qs Group Yes or No Binary Questions
Age Infant, Child, Adult, Old
Site Head, Mouth, Trunk, Arms,

Sex Organs, Legs, Nails
Number Single, Multiple
Distribution Bilateral, Unilateral, Localised, ...
Arrangement Discrete, Coalescing, Annular, ...
Type Flat, Raised Solid, Fluid Filled,

Broken Surface
Surface Normal, Scale, Broken Surface,

Changes in Thickness
Colour Blood, Pigment, Lack of Blood, ...
Border Well defined, Poorly defined
Shape Round, Irregular

Table 2: Classification Accuracies
Feature LIBSVM
Visual 13.37%
Tags 14.77%

Vis+Tags 16.03%
Feature Random Forest
Visual 15.46%
Tags 16.23%

Vis+Tags 21.69%

Table 3: User Answers Certainties
Answer Positive Negative

Guessing 0.625 0.375
Probably 0.75 0.25
Definitely 1 0

hence Q and Ti can be represented as M size vectors: Q= (q1, ...,qM)T and Ti = (ti1, ..., tiM)T .
Here ti j is an indicator function that shows tag j probability for the ith image. The prediction
of Q is totally influenced by the Ti and ci value:

q j =
K

∑
i=1

( ti j

Z
× f (ci)

)
, j ∈ {1,2, ...,M} (1)

Z is a normalizing constant, which is equal to ∑K
i=1 ∑M

j=1 ti j. The term f (ci) represents a
function that monotonically increases with ci. f (ci) in our work is: f (ci) = c2

i .

4 Experiments

4.1 Dataset
We developed a challenging dataset over 3 months for this specific application. This dataset
contains images of skin conditions from 44 different diseases. There are 880 training and
1429 testing images, totalling 2309 images. The lesions are manually segmented using a
bounding box that includes pixels of lesion, healthy skin, and noise such as hair. Features
are extracted from the entire bounding box, which as a whole is treated as a single instance.
Images with their ground truth classification are from http://www.dermis.net. An Example of
dataset image can be found in figure 2. Skin lesion images in our dataset range from different
types of Eczema to various cancerous conditions, such as Superficial Spreading Melanoma.

The set of questions, which summarises the patient’s skin lesion characteristics, are avail-
able in the dataset too. Medical professionals and a dermatological reference [1] were used
to scientifically derive these questions and answers. The dataset contains 37 possible ques-
tions. Answers to simple perceptual questions were collected from 361 “Amazon Mechanical
Turk” workers to form the database. Figure 2 represents a screenshot from the template used
by the workers. Table 1 illustrates the type of questions and answers we used in our solution.

4.2 Results
Baseline Classification Accuracy: We employed LIBSVM (A Library for Support Vec-

tor Machines) [3] as a baseline to measure the quality of our random forest solution. The
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Figure 1: Mean classification accuracy re-
sults: System predicted tags reduce the num-
ber of user tags required to achieve peak per-
formance. Results from randomly picked tags
is also illustrated.

Figure 2: AMT interface used by workers. Im-
age courtesy of: http://www.dermis.net

mean classification accuracy of LIBSVM over 5 runs using visual features, and tuned by
default parameters levels at 13.37%. The LIBSVM classifier using tags features results in an
accuracy of 14.77%. The combination of visual and tags features leads to a 16.03% mean
accuracy. These baseline results illustrate the sheer difficulty of our dataset.

Random Forest Classification Accuracy: Our random forest trained by 300 trees and
the same visual features results in an average accuracy of 15.46%. We also tried training the
same number of trees only with tags features. The average accuracy saturates at 16.23%. Our
random forest performs better than LIBSVM in both visual only and tags only cases. More
importantly as it is clear, not the visual only nor the tags only results are accurate enough
but once these features are combined, the classification accuracy rises to 21.69% using 300
trees. This shows the power of additional answers from users in samples where the visual
features fail to capture the complexity of visually similar images. Table 2 summarises these
results.

Automatic Answers Accuracy: It is very interesting to note that our solution is capable
of answering all the questions automatically, and achieving a better performance than vi-
sual only results. Visual only features classification accuracy saturates at 15.46%, while the
combination of these visual features with our fully predicted answers results in an average
accuracy of 17.91%.

Questions Ranking Effect: It is imperative to clarify the fact that the user in our system
doesn’t need to answer all questions. Our model utilises both user provided answers, as well
as automatically predicted tags in calculating the final results, despite the fact that some of
these tags may have been wrongly predicted. Figure 1 represents the effect of adding user
provided answers to our solution. As we gradually replace least confident automatic tags
with user tags, the average accuracy rises. It is important to note that the system does not
require to use all the user tags to achieve its peak performance. In the same figure, results
from randomly picked tags is also presented. It is obvious that randomly picking user tags
has not the same effective results as picking the least probable ones using our solution.

5 Conclusion
In this paper, we introduced a novel dermatology dataset. We proposed a random forest
technique that combines heterogeneous data to achieve promising recognition rates. We
also proposed an intelligent method to select the best sequence of questions that improves
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performance, while removing the burden on user’s side.
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