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Kripke semantics of modal logic has a successful model theory:
e.g. bisimulation theorems, correspondence theory, duality theory.

Goals
• Give structural accounts of the model theory.
—Rel will do the job.

• Rel has many generalizations. Identify which accommodates the
model theory.
—Allegories, i.e. the categories of relations of regular categories.
• In effect, Kripke semantics will be extended to regular categories.

Outline
1 Recast Kripke semantics and its model theory using Rel.
2 Briefly review allegories.
3 Give allegorical semantics of modal logic, and model theory.
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Kripke Semantics

Interprets propositional logic +modal operators �i, ^i (i ∈ I).

Two layers of semantic structures:
• A Kripke frame, a set X plus Ri : X →p X .
Each Ri interprets �i, ^i.
• A Kripke model, a frame (X,Ri) plus npo ⊆ X .
Each npo interprets a prop. variable p.

x � ϕ “ϕ is true at x”, for a world / state x ∈ X and a formula ϕ.

x � p ⇐⇒ x ∈ npo (via the model),
x � ϕ ∧ ψ ⇐⇒ x � ϕ and x � ψ,

x � �iϕ ⇐⇒ y � ϕ for all y s.th. xRiy (via the frame),
x � ^iϕ ⇐⇒ y � ϕ for some y s.th. xRiy (via the frame).
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“Standard translation”: “x � ϕ” tr
ϕ(x)

tr(p) = Px,

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ),
tr(�iϕ) = ∀y. Rixy ⇒ tr(ϕ)[y/x],
tr(^iϕ) = ∃y. Rixy ∧ tr(ϕ)[y/x].

Two layers of semantic structures =⇒ two (split) perspectives:
• Bisimulation theorems:
“modal logic is about LTSs (Kripke models).”
• Correspondence theory:
“modal logic is about binary relations (Kripke frames).”

Also, • Duality theory:
Kripke frames ' (powerset algebras with operators)op.

Rel gives a more unifying approach to these perspectives.
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Also, some variants of modal logic:

• Temporal logic has modalities about the future and about the
past, i.e. modalities of opposite relations.
• Dynamic logic has composition and union of transitions.
• “Dynamic epistemic logic” has modalities of transitions across
different models.
• Different `σ for different stages σ of computation (e.g. quote
and unquote as modalities).

Thus we need involution, union, etc., and categorification—hence Rel.
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Semantics Using Rel (take 1)

Every relation R : X →p Y induces two adjoint pairs:

PX PY PX PY
∃R

∀R†

∃R†

∀R

⊥ ⊥

∃R(S) = { v ∈ Y | w ∈ S for some w s.th. wRv },

∀R(S) = { v ∈ Y | w ∈ S for all w s.th. wRv }.

E.g. For R = f a function, ∃ f a ∀ f † = f −1 = ∃ f † a ∀ f .

E.g. n^ϕo = ∃R†nϕo and n�ϕo = ∀R†nϕo for R : X →p X .
We write _ and � for the opposite, ∃R and ∀R.

Complete atomic Boolean algebras (“caBas”, ' powerset algebras):
• caBa∨ with all-∨-preserving maps,
• caBa∧ with all-∧-preserving maps.

Then ∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧, and moreover . . . .
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∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧ are (1-) equivalences.

Thm (Thomason 1975).
Kripke frames ' (caBas with ∨-preserving operators)op.

X

X

Y

Y

−R −S

f

f

=
PX

PX

PY

PY
∃R ∃S

f −1

f −1

=

Thm. Bisimulations preserve satisfaction.
Pf. Because they are spans of homomorphisms.

X

X

Z

Z

Y

Y

−R −U −S

f

f

g

g

= =
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Rel is moreover enriched in Pos.

• ∃− : Rel→ caBa∨ is a 2-equivalence.
• ∃−† : Relop → caBa∨ is a 1-cell duality.
• ∀− : Relco → caBa∧ is a 2-cell duality.
• ∀−† : Relcoop → caBa∧ is a biduality.

Thm (Lemmon-Scott 1977). (Rn)†;Rm ⊆ R`;(Rk)† corresponds to
^m�kϕ ` �n^`ϕ, ^n�`ϕ ` �m^kϕ.

Pf. (Rn)†;Rm ⊆ R`;(Rk)†

_n ◦ ^m 6 ^` ◦ _k

^m 6 �n ◦ ^` ◦ _k

^m ◦ �k 6 �n ◦ ^`

(Rn)†;Rm ⊆ R`;(Rk)†

�` ◦ �k 6 �n ◦ �m

^n ◦ �` ◦ �k 6 �m

^n ◦ �` 6 �m ◦ ^k

E.g. • ϕ ` ^ϕ, �ϕ ` ϕ ⇐⇒ 1 ⊆ R (reflexivity);
• ^^ϕ ` ^ϕ, �ϕ ` ��ϕ ⇐⇒ R;R ⊆ R (transitivity);
• ϕ ` �^ϕ, ^�ϕ ` ϕ ⇐⇒ R† ⊆ R (symmetry).
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Semantics in Rel (take 2)

Worlds x ∈ X are functions x : 1→ X , or x .
Propositions ϕ ⊆ X are relations ϕ : X →p 1, or ϕ .

So the three components of Kripke frames and models become

x , Ri , p .

The truth of x � ϕ is given by the generalized Born rule:

x ϕ

x R ϕx � ^ϕ is

Validity of p ` ^p in a Kripke frame is

x p

x R p

6∀x, p

R

⊆⇐⇒
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Allegories

There are many categorical generalizations of Rel. Which of them
admits the foregoing approach to modal logic? — Allegories!

Def. An allegory A is a Pos-enriched †-category in which
• each A(X,Y ) has a binary meet, • † preserves ⊆ and ∩,
• semi-distributivity: R;(S ∩ T) ⊆ (R;S) ∩ (R;T),
• the modular law: (S;R) ∩ T ⊆ (S ∩ (T ;R†));R.

R

S

T

R

R

S

T

⊆

S

T

S

T

R

R†
R

⊆

We write >(X ,Y) for the top element of A(X,Y ) if it exists.
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R : X →p X is • reflexive if 1X ⊆ R,
• transitive if R;R ⊆ R, • symmetric if R† ⊆ R.

R : X →p Y is • total if 1X ⊆ R;R†,
• simple, or is a partial map, if R†;R ⊆ 1Y ,
• a map if it is total and simple (i.e. if it is a left adjoint).

Fact.

A Map(A)
Rel(C) C

�

allegories categories logic
unital and tabular regular >, ∧, ∃, =
+ “distributive” coherent (pre-logoi) ⊥, ∨
+ “division” Heyting (logoi) ⇒, ∀
+ “power” topoi ∈

Def. A is unital if it has a “unit” ( ≈ a terminal obj. of Map(A)).
Def. A is tabular if every relation is “tabulated” by a jointly monic
pair of maps.
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Subobjects
Two allegorical expressions for SubMap(A)(X):
• R : X →p X is correflexive, or is a “core”, if R ⊆ 1X .

Cor(X), the cores on X .
• A(X,1).

Fact. In a unital allegory A, define

Cor(X) A(X,1)

A(X,Y )

·̂

·

· ·̂

S = S;S† ∩ 1 Ŝ = S;>(Y ,1)

S S

Then the diagram commutes, so the bottom edge is isomorphisms.
If moreover A is tabular, Cor(X) � A(X,1) � SubMap(A)(X).
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Def. A is distributive if each A(X,Y ) is a distributive lattice and
compositions preserve ∪.

Def. A is a division allegory if compositions have right adjoints.

A(Y, Z) A(X, Z)
R;−

R\−
⊥ A(Z,X) A(Z,Y )

−;R

−/R
⊥

R;S ⊆ T

S ⊆ R\T

S;R ⊆ T

S ⊆ T/R

E.g.
P(Y ) P(X)

∃R† = R;−

∀R = R\−
⊥ P(X) P(Y )

∃R = R†;−

∀R† = R†\− = (−/R)†
⊥

We extend this and write

A(Y,1) A(X,1)
∃R† = R;−

∀R = R\−
⊥ A(X,1) A(Y,1)

∃R = R†;−

∀R† = R†\−
⊥
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Allegorical Semantics

On A(X,1), the interpretation on Cor(X) becomes

nϕ ∧ ψo = nϕo ∩ nψo = nϕo;nψo,
nϕ ∨ ψo = nϕo ∪ nψo,
nϕ⇒ ψo = nϕo\nψo,

n¬ϕo = nϕ⇒ ⊥o,
n>o = >(X ,1),
n⊥o = ⊥(X ,1).

To this, add, for each Ri : X →p X ,

n^iϕo = Ri;nϕo,
n�iϕo = Ri

†\nϕo.
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Syntax
• Basic types τ.
• Each prop. variable p has a basic type p : τ.
• Each label i of modal operators has a type i : τ → τ′.
• Different prop. constants >τ,⊥τ : τ for each different τ.

p1 : τ1, . . . , pn : τn ` p,>τ,⊥τ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ϕ : τ p1 : τ1, . . . , pn : τn ` ψ : τ
p1 : τ1, . . . , pn : τn ` ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ
p1 : τ1, . . . , pn : τn ` ¬ϕ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ^iϕ,�iϕ : τ′
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Frames and Models
Generate a category D from basic types τ and labels i : τ → τ′.

Kripke frames can then be generalized by
Def. A frame diagram in A is a n−o : Dop → A.

τ

τ′

nτo

nτ′o

A(nτo,1)

A(nτ′o,1)

nϕo

n^iϕo
i −nio nio;−

Let D∗ be D with an object ∗ and labels p : ∗ → τ added.
Def. A model diagram in A is a n−o : D∗op → A s.th. n∗o = 1.

∗

τ

1

nτo
p −npo ∈ A(nτo,1)

D may have more structure: e.g. † for temporal, ∪ for dynamic logics.
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Interpretation
For propositions of type τ,

nϕ ∧ ψo = nϕo ∩ nψo = nϕo;nψo,
nϕ ∨ ψo = nϕo ∪ nψo,
nϕ⇒ ψo = nϕo\nψo,

n¬ϕo = nϕ⇒ ⊥τo,
n>τo = >(nτo,1),
n⊥τo = ⊥(nτo,1).

For i : τ → τ′, given nϕo : nτo→p 1,

n^iϕo = nio;nϕo : nτ′o→p 1,
n�iϕo = nio†\nϕo : nτ′o→p 1.
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Example
Simpson’s (1994) semantics in terms of “birelation models”:
• A frame is a poset (X,6) plus R : X →p X s.th.

X

X

X

X

X

X

X

X
−6 −6

−

R

−
R
⊆
−6 −6

−

R†

−

R†

⊆

• Each npo ⊆ X is 6-upward closed.

This is to take our allegorical semantics in the allegory of posets and
bisimulations.
(npo ⊆ X is 6-upward closed iff npo : X →p 1 is a bisimulation.)
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Maps of diagrams and bisimulations
Def. A map of diagrams is a map-valued natural transformation.

nτo1

nτ′o1

nτo2

nτ′o2

−nio1

−nio2

ατ

ατ′

=
τ

τ′
i

Thm.

nτo1 nτo2

1

1

ατ

−

nϕo1
−
nϕo2

x y

=
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Thm. The correspondence below extends to every A.

X

X

Y

Y

−R −S

−

T

−
T

⊆

X

X

Z

Z

Y

Y

−R −U −S

f

f

g

g

= =

Def. A bisimulation of diagrams is a span of maps.
Thm.

nτo1 H(τ) nτo2

1

1

ατ βτ

x z y

−

nϕo1 −

H(ϕ)

−

nϕo2
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Duality and correspondence
For a nice enough A, we have order embeddings

∃−† : A(X,Y ) → Pos(A(Y,1),A(X,1)),
and order-reversing embeddings

∀−† : A(X,Y ) → Pos(A(Y,1),A(X,1)).

Thm. In such an A, the condition R1
†;R2 ⊆ R3;R4

† corresponds to
^2�4ϕ ` �1^3ϕ, ^1�3ϕ ` �2^4ϕ.

Indeed, (the intuitionistic version of) the much stronger “calculus for
correspondence” (Conradie et al. 2014) is sound in any division A
s.th. Map(A) is well-pointed.
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Standard translation into categorical logic of Map(A).
( x : T | tr(p : τ) ) = ( x : T | Px ),

( x : T | tr(⊥ : τ) ) = ( x : T | x , x ),

( x : T | tr(ϕ ∧ ψ : τ) ) = ( x : T | tr(ϕ : τ) ∧ tr(ψ : τ) ),
( x : T | tr(�iϕ : τ) ) = ( x : T | ∀y : T ′ (Rixy ⇒ tr(ϕ : τ′)[y/x] ),
( x : T | tr(^iϕ : τ) ) = ( x : T | ∃y : T ′ (Rixy ∧ tr(ϕ : τ′)[y/x] ).
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Logic of the semantics
Since ∃R† and ∀R† are left and right adjoints,

ϕ `τ ψ

^ϕ `τ′ ^ψ
^(ϕ ∨ ψ) `τ′ ^ϕ ∨ ^ψ

^⊥τ `τ′ ⊥τ′

ϕ `τ ψ

�ϕ `τ′ �ψ
�ϕ ∧ �ψ `τ′ �(ϕ ∧ ψ)

>τ′ `τ′ �>τ

The following are sound by the modular law.
^ϕ ∧ �χ ` ^(ϕ ∧ χ)

(^ϕ⇒ �ψ) ` �(ϕ⇒ ψ)

This is in fact a typed version of IK (the logic of Simpson’s (1994)
semantics). Call it tIK.
Thm. tIK is sound and complete w.r.t. all allegorical semantics.
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Future Work

• More on bisimulation theorems. In particular, Hennessy-Milner
and van Benthem-type theorems.
• More variants of modal logic. E.g. fixed point logic.
• Axiomatization of smaller fragments. E.g. without division
structure.
• Axiomatization of particular base logics. E.g. the allegory of
fuzzy relations.
• In particular, Rel(C) as models of quantum theory (Heunen-Tull
2015).
• Diagrammatic methods for the distribution and division
structures.

23 / 23
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