
An Allegorical Semantics of Modal Logic

Kohei Kishida

Dalhousie University

20 Sept, 2018

Kripke semantics of modal logic has a successful model theory:
e.g. bisimulation theorems, correspondence theory, duality theory.

Goals
• Give structural accounts of the model theory.
—Rel will do the job.

• Rel has many generalizations. Identify which accommodates the
model theory.
—Allegories, i.e. the categories of relations of regular categories.
• In effect, Kripke semantics will be extended to regular categories.

Outline
1 Recast Kripke semantics and its model theory using Rel.
2 Briefly review allegories.
3 Give allegorical semantics of modal logic, and model theory.

1 / 23

Kripke semantics of modal logic has a successful model theory:
e.g. bisimulation theorems, correspondence theory, duality theory.

Goals
• Give structural accounts of the model theory.
—Rel will do the job.
• Rel has many generalizations. Identify which accommodates the
model theory.
—Allegories, i.e. the categories of relations of regular categories.
• In effect, Kripke semantics will be extended to regular categories.

Outline
1 Recast Kripke semantics and its model theory using Rel.
2 Briefly review allegories.
3 Give allegorical semantics of modal logic, and model theory.

1 / 23

Kripke semantics of modal logic has a successful model theory:
e.g. bisimulation theorems, correspondence theory, duality theory.

Goals
• Give structural accounts of the model theory.
—Rel will do the job.
• Rel has many generalizations. Identify which accommodates the
model theory.
—Allegories, i.e. the categories of relations of regular categories.
• In effect, Kripke semantics will be extended to regular categories.

Outline
1 Recast Kripke semantics and its model theory using Rel.
2 Briefly review allegories.
3 Give allegorical semantics of modal logic, and model theory.

1 / 23

Kripke Semantics

Interprets propositional logic +modal operators �i, ^i (i ∈ I).

Two layers of semantic structures:
• A Kripke frame, a set X plus Ri : X →p X .
Each Ri interprets �i, ^i.
• A Kripke model, a frame (X,Ri) plus npo ⊆ X .
Each npo interprets a prop. variable p.

x � ϕ “ϕ is true at x”, for a world / state x ∈ X and a formula ϕ.

x � p ⇐⇒ x ∈ npo (via the model),
x � ϕ ∧ ψ ⇐⇒ x � ϕ and x � ψ,

x � �iϕ ⇐⇒ y � ϕ for all y s.th. xRiy (via the frame),
x � ^iϕ ⇐⇒ y � ϕ for some y s.th. xRiy (via the frame).

2 / 23

Kripke Semantics

Interprets propositional logic +modal operators �i, ^i (i ∈ I).
Two layers of semantic structures:
• A Kripke frame, a set X plus Ri : X →p X .
Each Ri interprets �i, ^i.
• A Kripke model, a frame (X,Ri) plus npo ⊆ X .
Each npo interprets a prop. variable p.

x � ϕ “ϕ is true at x”, for a world / state x ∈ X and a formula ϕ.

x � p ⇐⇒ x ∈ npo (via the model),
x � ϕ ∧ ψ ⇐⇒ x � ϕ and x � ψ,

x � �iϕ ⇐⇒ y � ϕ for all y s.th. xRiy (via the frame),
x � ^iϕ ⇐⇒ y � ϕ for some y s.th. xRiy (via the frame).

2 / 23

Kripke Semantics

Interprets propositional logic +modal operators �i, ^i (i ∈ I).
Two layers of semantic structures:
• A Kripke frame, a set X plus Ri : X →p X .
Each Ri interprets �i, ^i.
• A Kripke model, a frame (X,Ri) plus npo ⊆ X .
Each npo interprets a prop. variable p.

x � ϕ “ϕ is true at x”, for a world / state x ∈ X and a formula ϕ.

x � p ⇐⇒ x ∈ npo (via the model),
x � ϕ ∧ ψ ⇐⇒ x � ϕ and x � ψ,

x � �iϕ ⇐⇒ y � ϕ for all y s.th. xRiy (via the frame),
x � ^iϕ ⇐⇒ y � ϕ for some y s.th. xRiy (via the frame).

2 / 23

Kripke Semantics

Interprets propositional logic +modal operators �i, ^i (i ∈ I).
Two layers of semantic structures:
• A Kripke frame, a set X plus Ri : X →p X .
Each Ri interprets �i, ^i.
• A Kripke model, a frame (X,Ri) plus npo ⊆ X .
Each npo interprets a prop. variable p.

x � ϕ “ϕ is true at x”, for a world / state x ∈ X and a formula ϕ.

x � p ⇐⇒ x ∈ npo (via the model),
x � ϕ ∧ ψ ⇐⇒ x � ϕ and x � ψ,

x � �iϕ ⇐⇒ y � ϕ for all y s.th. xRiy (via the frame),
x � ^iϕ ⇐⇒ y � ϕ for some y s.th. xRiy (via the frame).

2 / 23

“Standard translation”: “x � ϕ” tr
ϕ(x)

tr(p) = Px,

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ),
tr(�iϕ) = ∀y. Rixy ⇒ tr(ϕ)[y/x],
tr(^iϕ) = ∃y. Rixy ∧ tr(ϕ)[y/x].

Two layers of semantic structures =⇒ two (split) perspectives:
• Bisimulation theorems:
“modal logic is about LTSs (Kripke models).”
• Correspondence theory:
“modal logic is about binary relations (Kripke frames).”

Also, • Duality theory:
Kripke frames ' (powerset algebras with operators)op.

Rel gives a more unifying approach to these perspectives.

3 / 23

“Standard translation”: “x � ϕ” tr
ϕ(x)

tr(p) = Px,

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ),
tr(�iϕ) = ∀y. Rixy ⇒ tr(ϕ)[y/x],
tr(^iϕ) = ∃y. Rixy ∧ tr(ϕ)[y/x].

Two layers of semantic structures =⇒ two (split) perspectives:
• Bisimulation theorems:
“modal logic is about LTSs (Kripke models).”
• Correspondence theory:
“modal logic is about binary relations (Kripke frames).”

Also, • Duality theory:
Kripke frames ' (powerset algebras with operators)op.

Rel gives a more unifying approach to these perspectives.

3 / 23

“Standard translation”: “x � ϕ” tr
ϕ(x)

tr(p) = Px,

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ),
tr(�iϕ) = ∀y. Rixy ⇒ tr(ϕ)[y/x],
tr(^iϕ) = ∃y. Rixy ∧ tr(ϕ)[y/x].

Two layers of semantic structures =⇒ two (split) perspectives:
• Bisimulation theorems:
“modal logic is about LTSs (Kripke models).”
• Correspondence theory:
“modal logic is about binary relations (Kripke frames).”

Also, • Duality theory:
Kripke frames ' (powerset algebras with operators)op.

Rel gives a more unifying approach to these perspectives.

3 / 23

“Standard translation”: “x � ϕ” tr
ϕ(x)

tr(p) = Px,

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ),
tr(�iϕ) = ∀y. Rixy ⇒ tr(ϕ)[y/x],
tr(^iϕ) = ∃y. Rixy ∧ tr(ϕ)[y/x].

Two layers of semantic structures =⇒ two (split) perspectives:
• Bisimulation theorems:
“modal logic is about LTSs (Kripke models).”
• Correspondence theory:
“modal logic is about binary relations (Kripke frames).”

Also, • Duality theory:
Kripke frames ' (powerset algebras with operators)op.

Rel gives a more unifying approach to these perspectives.

3 / 23

Also, some variants of modal logic:

• Temporal logic has modalities about the future and about the
past, i.e. modalities of opposite relations.
• Dynamic logic has composition and union of transitions.
• “Dynamic epistemic logic” has modalities of transitions across
different models.
• Different `σ for different stages σ of computation (e.g. quote
and unquote as modalities).

Thus we need involution, union, etc., and categorification—hence Rel.

4 / 23

Semantics Using Rel (take 1)

Every relation R : X →p Y induces two adjoint pairs:

PX PY PX PY
∃R

∀R†

∃R†

∀R

⊥ ⊥

∃R(S) = { v ∈ Y | w ∈ S for some w s.th. wRv },

∀R(S) = { v ∈ Y | w ∈ S for all w s.th. wRv }.

E.g. For R = f a function, ∃ f a ∀ f † = f −1 = ∃ f † a ∀ f .

E.g. n^ϕo = ∃R†nϕo and n�ϕo = ∀R†nϕo for R : X →p X .
We write _ and � for the opposite, ∃R and ∀R.

Complete atomic Boolean algebras (“caBas”, ' powerset algebras):
• caBa∨ with all-∨-preserving maps,
• caBa∧ with all-∧-preserving maps.

Then ∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧, and moreover

5 / 23

Semantics Using Rel (take 1)

Every relation R : X →p Y induces two adjoint pairs:

PX PY PX PY
∃R

∀R†

∃R†

∀R

⊥ ⊥

∃R(S) = { v ∈ Y | w ∈ S for some w s.th. wRv },

∀R(S) = { v ∈ Y | w ∈ S for all w s.th. wRv }.

E.g. For R = f a function, ∃ f a ∀ f † = f −1 = ∃ f † a ∀ f .

E.g. n^ϕo = ∃R†nϕo and n�ϕo = ∀R†nϕo for R : X →p X .
We write _ and � for the opposite, ∃R and ∀R.

Complete atomic Boolean algebras (“caBas”, ' powerset algebras):
• caBa∨ with all-∨-preserving maps,
• caBa∧ with all-∧-preserving maps.

Then ∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧, and moreover

5 / 23

Semantics Using Rel (take 1)

Every relation R : X →p Y induces two adjoint pairs:

PX PY PX PY
∃R

∀R†

∃R†

∀R

⊥ ⊥

∃R(S) = { v ∈ Y | w ∈ S for some w s.th. wRv },

∀R(S) = { v ∈ Y | w ∈ S for all w s.th. wRv }.

E.g. For R = f a function, ∃ f a ∀ f † = f −1 = ∃ f † a ∀ f .

E.g. n^ϕo = ∃R†nϕo and n�ϕo = ∀R†nϕo for R : X →p X .
We write _ and � for the opposite, ∃R and ∀R.

Complete atomic Boolean algebras (“caBas”, ' powerset algebras):
• caBa∨ with all-∨-preserving maps,
• caBa∧ with all-∧-preserving maps.

Then ∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧, and moreover

5 / 23

Semantics Using Rel (take 1)

Every relation R : X →p Y induces two adjoint pairs:

PX PY PX PY
∃R

∀R†

∃R†

∀R

⊥ ⊥

∃R(S) = { v ∈ Y | w ∈ S for some w s.th. wRv },

∀R(S) = { v ∈ Y | w ∈ S for all w s.th. wRv }.

E.g. For R = f a function, ∃ f a ∀ f † = f −1 = ∃ f † a ∀ f .

E.g. n^ϕo = ∃R†nϕo and n�ϕo = ∀R†nϕo for R : X →p X .
We write _ and � for the opposite, ∃R and ∀R.

Complete atomic Boolean algebras (“caBas”, ' powerset algebras):
• caBa∨ with all-∨-preserving maps,
• caBa∧ with all-∧-preserving maps.

Then ∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧, and moreover

5 / 23

∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧ are (1-) equivalences.

Thm (Thomason 1975).
Kripke frames ' (caBas with ∨-preserving operators)op.

X

X

Y

Y

−R −S

f

f

=
PX

PX

PY

PY
∃R ∃S

f −1

f −1

=

Thm. Bisimulations preserve satisfaction.
Pf. Because they are spans of homomorphisms.

X

X

Z

Z

Y

Y

−R −U −S

f

f

g

g

= =

6 / 23

∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧ are (1-) equivalences.
Thm (Thomason 1975).

Kripke frames ' (caBas with ∨-preserving operators)op.

X

X

Y

Y

−R −S

f

f

=
PX

PX

PY

PY
∃R ∃S

f −1

f −1

=

Thm. Bisimulations preserve satisfaction.
Pf. Because they are spans of homomorphisms.

X

X

Z

Z

Y

Y

−R −U −S

f

f

g

g

= =

6 / 23

∃− : Rel→ caBa∨ and ∀− : Rel→ caBa∧ are (1-) equivalences.
Thm (Thomason 1975).

Kripke frames ' (caBas with ∨-preserving operators)op.

X

X

Y

Y

−R −S

f

f

=
PX

PX

PY

PY
∃R ∃S

f −1

f −1

=

Thm. Bisimulations preserve satisfaction.
Pf. Because they are spans of homomorphisms.

X

X

Z

Z

Y

Y

−R −U −S

f

f

g

g

= =

6 / 23

Rel is moreover enriched in Pos.

• ∃− : Rel→ caBa∨ is a 2-equivalence.
• ∃−† : Relop → caBa∨ is a 1-cell duality.
• ∀− : Relco → caBa∧ is a 2-cell duality.
• ∀−† : Relcoop → caBa∧ is a biduality.

Thm (Lemmon-Scott 1977). (Rn)†;Rm ⊆ R`;(Rk)† corresponds to
^m�kϕ ` �n^`ϕ, ^n�`ϕ ` �m^kϕ.

Pf. (Rn)†;Rm ⊆ R`;(Rk)†

_n ◦ ^m 6 ^` ◦ _k

^m 6 �n ◦ ^` ◦ _k

^m ◦ �k 6 �n ◦ ^`

(Rn)†;Rm ⊆ R`;(Rk)†

�` ◦ �k 6 �n ◦ �m

^n ◦ �` ◦ �k 6 �m

^n ◦ �` 6 �m ◦ ^k

E.g. • ϕ ` ^ϕ, �ϕ ` ϕ ⇐⇒ 1 ⊆ R (reflexivity);
• ^^ϕ ` ^ϕ, �ϕ ` ��ϕ ⇐⇒ R;R ⊆ R (transitivity);
• ϕ ` �^ϕ, ^�ϕ ` ϕ ⇐⇒ R† ⊆ R (symmetry).

7 / 23

Rel is moreover enriched in Pos.
• ∃− : Rel→ caBa∨ is a 2-equivalence.
• ∃−† : Relop → caBa∨ is a 1-cell duality.
• ∀− : Relco → caBa∧ is a 2-cell duality.
• ∀−† : Relcoop → caBa∧ is a biduality.

Thm (Lemmon-Scott 1977). (Rn)†;Rm ⊆ R`;(Rk)† corresponds to
^m�kϕ ` �n^`ϕ, ^n�`ϕ ` �m^kϕ.

Pf. (Rn)†;Rm ⊆ R`;(Rk)†

_n ◦ ^m 6 ^` ◦ _k

^m 6 �n ◦ ^` ◦ _k

^m ◦ �k 6 �n ◦ ^`

(Rn)†;Rm ⊆ R`;(Rk)†

�` ◦ �k 6 �n ◦ �m

^n ◦ �` ◦ �k 6 �m

^n ◦ �` 6 �m ◦ ^k

E.g. • ϕ ` ^ϕ, �ϕ ` ϕ ⇐⇒ 1 ⊆ R (reflexivity);
• ^^ϕ ` ^ϕ, �ϕ ` ��ϕ ⇐⇒ R;R ⊆ R (transitivity);
• ϕ ` �^ϕ, ^�ϕ ` ϕ ⇐⇒ R† ⊆ R (symmetry).

7 / 23

Rel is moreover enriched in Pos.
• ∃− : Rel→ caBa∨ is a 2-equivalence.
• ∃−† : Relop → caBa∨ is a 1-cell duality.
• ∀− : Relco → caBa∧ is a 2-cell duality.
• ∀−† : Relcoop → caBa∧ is a biduality.

Thm (Lemmon-Scott 1977). (Rn)†;Rm ⊆ R`;(Rk)† corresponds to
^m�kϕ ` �n^`ϕ, ^n�`ϕ ` �m^kϕ.

Pf. (Rn)†;Rm ⊆ R`;(Rk)†

_n ◦ ^m 6 ^` ◦ _k

^m 6 �n ◦ ^` ◦ _k

^m ◦ �k 6 �n ◦ ^`

(Rn)†;Rm ⊆ R`;(Rk)†

�` ◦ �k 6 �n ◦ �m

^n ◦ �` ◦ �k 6 �m

^n ◦ �` 6 �m ◦ ^k

E.g. • ϕ ` ^ϕ, �ϕ ` ϕ ⇐⇒ 1 ⊆ R (reflexivity);
• ^^ϕ ` ^ϕ, �ϕ ` ��ϕ ⇐⇒ R;R ⊆ R (transitivity);
• ϕ ` �^ϕ, ^�ϕ ` ϕ ⇐⇒ R† ⊆ R (symmetry).

7 / 23

Semantics in Rel (take 2)

Worlds x ∈ X are functions x : 1→ X , or x .
Propositions ϕ ⊆ X are relations ϕ : X →p 1, or ϕ .

So the three components of Kripke frames and models become

x , Ri , p .

The truth of x � ϕ is given by the generalized Born rule:

x ϕ

x R ϕx � ^ϕ is

Validity of p ` ^p in a Kripke frame is

x p

x R p

6∀x, p

R

⊆⇐⇒

8 / 23

Semantics in Rel (take 2)

Worlds x ∈ X are functions x : 1→ X , or x .
Propositions ϕ ⊆ X are relations ϕ : X →p 1, or ϕ .

So the three components of Kripke frames and models become

x , Ri , p .

The truth of x � ϕ is given by the generalized Born rule:

x ϕ

x R ϕx � ^ϕ is

Validity of p ` ^p in a Kripke frame is

x p

x R p

6∀x, p

R

⊆⇐⇒

8 / 23

Semantics in Rel (take 2)

Worlds x ∈ X are functions x : 1→ X , or x .
Propositions ϕ ⊆ X are relations ϕ : X →p 1, or ϕ .

So the three components of Kripke frames and models become

x , Ri , p .

The truth of x � ϕ is given by the generalized Born rule:

x ϕ

x R ϕx � ^ϕ is

Validity of p ` ^p in a Kripke frame is

x p

x R p

6∀x, p

R

⊆⇐⇒

8 / 23

Semantics in Rel (take 2)

Worlds x ∈ X are functions x : 1→ X , or x .
Propositions ϕ ⊆ X are relations ϕ : X →p 1, or ϕ .

So the three components of Kripke frames and models become

x , Ri , p .

The truth of x � ϕ is given by the generalized Born rule:

x ϕ

x R ϕx � ^ϕ is

Validity of p ` ^p in a Kripke frame is

x p

x R p

6∀x, p

R

⊆⇐⇒

8 / 23

Semantics in Rel (take 2)

Worlds x ∈ X are functions x : 1→ X , or x .
Propositions ϕ ⊆ X are relations ϕ : X →p 1, or ϕ .

So the three components of Kripke frames and models become

x , Ri , p .

The truth of x � ϕ is given by the generalized Born rule:

x ϕ

x R ϕx � ^ϕ is

Validity of p ` ^p in a Kripke frame is

x p

x R p

6∀x, p

R

⊆⇐⇒

8 / 23

Semantics in Rel (take 2)

Worlds x ∈ X are functions x : 1→ X , or x .
Propositions ϕ ⊆ X are relations ϕ : X →p 1, or ϕ .

So the three components of Kripke frames and models become

x , Ri , p .

The truth of x � ϕ is given by the generalized Born rule:

x ϕ

x R ϕx � ^ϕ is

Validity of p ` ^p in a Kripke frame is

x p

x R p

6∀x, p
R

⊆⇐⇒

8 / 23

Allegories

There are many categorical generalizations of Rel. Which of them
admits the foregoing approach to modal logic? — Allegories!

Def. An allegory A is a Pos-enriched †-category in which
• each A(X,Y) has a binary meet, • † preserves ⊆ and ∩,
• semi-distributivity: R;(S ∩ T) ⊆ (R;S) ∩ (R;T),
• the modular law: (S;R) ∩ T ⊆ (S ∩ (T ;R†));R.

R

S

T

R

R

S

T

⊆

S

T

S

T

R

R†
R

⊆

We write >(X ,Y) for the top element of A(X,Y) if it exists.

9 / 23

Allegories

There are many categorical generalizations of Rel. Which of them
admits the foregoing approach to modal logic? — Allegories!

Def. An allegory A is a Pos-enriched †-category in which
• each A(X,Y) has a binary meet, • † preserves ⊆ and ∩,
• semi-distributivity: R;(S ∩ T) ⊆ (R;S) ∩ (R;T),
• the modular law: (S;R) ∩ T ⊆ (S ∩ (T ;R†));R.

R

S

T

R

R

S

T

⊆

S

T

S

T

R

R†
R

⊆

We write >(X ,Y) for the top element of A(X,Y) if it exists.

9 / 23

Allegories

There are many categorical generalizations of Rel. Which of them
admits the foregoing approach to modal logic? — Allegories!

Def. An allegory A is a Pos-enriched †-category in which
• each A(X,Y) has a binary meet, • † preserves ⊆ and ∩,
• semi-distributivity: R;(S ∩ T) ⊆ (R;S) ∩ (R;T),
• the modular law: (S;R) ∩ T ⊆ (S ∩ (T ;R†));R.

R
S

T

R

R

S

T

⊆

S

T

S

T

R

R†
R

⊆

We write >(X ,Y) for the top element of A(X,Y) if it exists.

9 / 23

Allegories

There are many categorical generalizations of Rel. Which of them
admits the foregoing approach to modal logic? — Allegories!

Def. An allegory A is a Pos-enriched †-category in which
• each A(X,Y) has a binary meet, • † preserves ⊆ and ∩,
• semi-distributivity: R;(S ∩ T) ⊆ (R;S) ∩ (R;T),
• the modular law: (S;R) ∩ T ⊆ (S ∩ (T ;R†));R.

R
S

T

R

R

S

T

⊆

S

T

S

T

R

R†
R

⊆

We write >(X ,Y) for the top element of A(X,Y) if it exists.
9 / 23

R : X →p X is • reflexive if 1X ⊆ R,
• transitive if R;R ⊆ R, • symmetric if R† ⊆ R.

R : X →p Y is • total if 1X ⊆ R;R†,
• simple, or is a partial map, if R†;R ⊆ 1Y ,
• a map if it is total and simple (i.e. if it is a left adjoint).

Fact.

A Map(A)
Rel(C) C

�

allegories categories logic
unital and tabular regular >, ∧, ∃, =
+ “distributive” coherent (pre-logoi) ⊥, ∨
+ “division” Heyting (logoi) ⇒, ∀
+ “power” topoi ∈

Def. A is unital if it has a “unit” (≈ a terminal obj. of Map(A)).
Def. A is tabular if every relation is “tabulated” by a jointly monic
pair of maps.

10 / 23

R : X →p X is • reflexive if 1X ⊆ R,
• transitive if R;R ⊆ R, • symmetric if R† ⊆ R.

R : X →p Y is • total if 1X ⊆ R;R†,
• simple, or is a partial map, if R†;R ⊆ 1Y ,
• a map if it is total and simple (i.e. if it is a left adjoint).

Fact.

A Map(A)
Rel(C) C

�

allegories categories logic
unital and tabular regular >, ∧, ∃, =
+ “distributive” coherent (pre-logoi) ⊥, ∨
+ “division” Heyting (logoi) ⇒, ∀
+ “power” topoi ∈

Def. A is unital if it has a “unit” (≈ a terminal obj. of Map(A)).
Def. A is tabular if every relation is “tabulated” by a jointly monic
pair of maps.

10 / 23

R : X →p X is • reflexive if 1X ⊆ R,
• transitive if R;R ⊆ R, • symmetric if R† ⊆ R.

R : X →p Y is • total if 1X ⊆ R;R†,
• simple, or is a partial map, if R†;R ⊆ 1Y ,
• a map if it is total and simple (i.e. if it is a left adjoint).

Fact. A Map(A)
Rel(C) C

�

allegories categories

logic

unital and tabular regular

>, ∧, ∃, =
+ “distributive” coherent (pre-logoi) ⊥, ∨
+ “division” Heyting (logoi) ⇒, ∀
+ “power” topoi ∈

Def. A is unital if it has a “unit” (≈ a terminal obj. of Map(A)).
Def. A is tabular if every relation is “tabulated” by a jointly monic
pair of maps.

10 / 23

R : X →p X is • reflexive if 1X ⊆ R,
• transitive if R;R ⊆ R, • symmetric if R† ⊆ R.

R : X →p Y is • total if 1X ⊆ R;R†,
• simple, or is a partial map, if R†;R ⊆ 1Y ,
• a map if it is total and simple (i.e. if it is a left adjoint).

Fact. A Map(A)
Rel(C) C

�

allegories categories logic
unital and tabular regular >, ∧, ∃, =

+ “distributive” coherent (pre-logoi) ⊥, ∨
+ “division” Heyting (logoi) ⇒, ∀
+ “power” topoi ∈

Def. A is unital if it has a “unit” (≈ a terminal obj. of Map(A)).
Def. A is tabular if every relation is “tabulated” by a jointly monic
pair of maps.

10 / 23

R : X →p X is • reflexive if 1X ⊆ R,
• transitive if R;R ⊆ R, • symmetric if R† ⊆ R.

R : X →p Y is • total if 1X ⊆ R;R†,
• simple, or is a partial map, if R†;R ⊆ 1Y ,
• a map if it is total and simple (i.e. if it is a left adjoint).

Fact. A Map(A)
Rel(C) C

�

allegories categories logic
unital and tabular regular >, ∧, ∃, =
+ “distributive” coherent (pre-logoi) ⊥, ∨
+ “division” Heyting (logoi) ⇒, ∀
+ “power” topoi ∈

Def. A is unital if it has a “unit” (≈ a terminal obj. of Map(A)).
Def. A is tabular if every relation is “tabulated” by a jointly monic
pair of maps.

10 / 23

Subobjects
Two allegorical expressions for SubMap(A)(X):
• R : X →p X is correflexive, or is a “core”, if R ⊆ 1X .

Cor(X), the cores on X .
• A(X,1).

Fact. In a unital allegory A, define

Cor(X) A(X,1)

A(X,Y)

·̂

·

· ·̂

S = S;S† ∩ 1 Ŝ = S;>(Y ,1)

S S

Then the diagram commutes, so the bottom edge is isomorphisms.
If moreover A is tabular, Cor(X) � A(X,1) � SubMap(A)(X).

11 / 23

Subobjects
Two allegorical expressions for SubMap(A)(X):
• R : X →p X is correflexive, or is a “core”, if R ⊆ 1X .

Cor(X), the cores on X .
• A(X,1).

Fact. In a unital allegory A, define

Cor(X) A(X,1)

A(X,Y)

·̂

·

· ·̂

S = S;S† ∩ 1 Ŝ = S;>(Y ,1)

S S

Then the diagram commutes, so the bottom edge is isomorphisms.
If moreover A is tabular, Cor(X) � A(X,1) � SubMap(A)(X).

11 / 23

Subobjects
Two allegorical expressions for SubMap(A)(X):
• R : X →p X is correflexive, or is a “core”, if R ⊆ 1X .

Cor(X), the cores on X .
• A(X,1).

Fact. In a unital allegory A, define

Cor(X) A(X,1)

A(X,Y)

·̂

·

· ·̂

S = S;S† ∩ 1 Ŝ = S;>(Y ,1)

S S

Then the diagram commutes, so the bottom edge is isomorphisms.
If moreover A is tabular, Cor(X) � A(X,1) � SubMap(A)(X).

11 / 23

Def. A is distributive if each A(X,Y) is a distributive lattice and
compositions preserve ∪.

Def. A is a division allegory if compositions have right adjoints.

A(Y, Z) A(X, Z)
R;−

R\−
⊥ A(Z,X) A(Z,Y)

−;R

−/R
⊥

R;S ⊆ T

S ⊆ R\T

S;R ⊆ T

S ⊆ T/R

E.g.
P(Y) P(X)

∃R† = R;−

∀R = R\−
⊥ P(X) P(Y)

∃R = R†;−

∀R† = R†\− = (−/R)†
⊥

We extend this and write

A(Y,1) A(X,1)
∃R† = R;−

∀R = R\−
⊥ A(X,1) A(Y,1)

∃R = R†;−

∀R† = R†\−
⊥

12 / 23

Def. A is distributive if each A(X,Y) is a distributive lattice and
compositions preserve ∪.

Def. A is a division allegory if compositions have right adjoints.

A(Y, Z) A(X, Z)
R;−

R\−
⊥ A(Z,X) A(Z,Y)

−;R

−/R
⊥

R;S ⊆ T

S ⊆ R\T

S;R ⊆ T

S ⊆ T/R

E.g.
P(Y) P(X)

∃R† = R;−

∀R = R\−
⊥ P(X) P(Y)

∃R = R†;−

∀R† = R†\− = (−/R)†
⊥

We extend this and write

A(Y,1) A(X,1)
∃R† = R;−

∀R = R\−
⊥ A(X,1) A(Y,1)

∃R = R†;−

∀R† = R†\−
⊥

12 / 23

Def. A is distributive if each A(X,Y) is a distributive lattice and
compositions preserve ∪.

Def. A is a division allegory if compositions have right adjoints.

A(Y, Z) A(X, Z)
R;−

R\−
⊥ A(Z,X) A(Z,Y)

−;R

−/R
⊥

R;S ⊆ T

S ⊆ R\T

S;R ⊆ T

S ⊆ T/R

E.g.
P(Y) P(X)

∃R† = R;−

∀R = R\−
⊥ P(X) P(Y)

∃R = R†;−

∀R† = R†\− = (−/R)†
⊥

We extend this and write

A(Y,1) A(X,1)
∃R† = R;−

∀R = R\−
⊥ A(X,1) A(Y,1)

∃R = R†;−

∀R† = R†\−
⊥

12 / 23

Def. A is distributive if each A(X,Y) is a distributive lattice and
compositions preserve ∪.

Def. A is a division allegory if compositions have right adjoints.

A(Y, Z) A(X, Z)
R;−

R\−
⊥ A(Z,X) A(Z,Y)

−;R

−/R
⊥

R;S ⊆ T

S ⊆ R\T

S;R ⊆ T

S ⊆ T/R

E.g.
P(Y) P(X)

∃R† = R;−

∀R = R\−
⊥ P(X) P(Y)

∃R = R†;−

∀R† = R†\− = (−/R)†
⊥

We extend this and write

A(Y,1) A(X,1)
∃R† = R;−

∀R = R\−
⊥ A(X,1) A(Y,1)

∃R = R†;−

∀R† = R†\−
⊥

12 / 23

Allegorical Semantics

On A(X,1), the interpretation on Cor(X) becomes

nϕ ∧ ψo = nϕo ∩ nψo = nϕo;nψo,
nϕ ∨ ψo = nϕo ∪ nψo,
nϕ⇒ ψo = nϕo\nψo,

n¬ϕo = nϕ⇒ ⊥o,
n>o = >(X ,1),
n⊥o = ⊥(X ,1).

To this, add, for each Ri : X →p X ,

n^iϕo = Ri;nϕo,
n�iϕo = Ri

†\nϕo.

13 / 23

Allegorical Semantics

On A(X,1), the interpretation on Cor(X) becomes

nϕ ∧ ψo = nϕo ∩ nψo = nϕo;nψo,
nϕ ∨ ψo = nϕo ∪ nψo,
nϕ⇒ ψo = nϕo\nψo,

n¬ϕo = nϕ⇒ ⊥o,
n>o = >(X ,1),
n⊥o = ⊥(X ,1).

To this, add, for each Ri : X →p X ,

n^iϕo = Ri;nϕo,
n�iϕo = Ri

†\nϕo.

13 / 23

Syntax
• Basic types τ.
• Each prop. variable p has a basic type p : τ.
• Each label i of modal operators has a type i : τ → τ′.
• Different prop. constants >τ,⊥τ : τ for each different τ.

p1 : τ1, . . . , pn : τn ` p,>τ,⊥τ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ϕ : τ p1 : τ1, . . . , pn : τn ` ψ : τ
p1 : τ1, . . . , pn : τn ` ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ
p1 : τ1, . . . , pn : τn ` ¬ϕ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ^iϕ,�iϕ : τ′

14 / 23

Syntax
• Basic types τ.
• Each prop. variable p has a basic type p : τ.
• Each label i of modal operators has a type i : τ → τ′.
• Different prop. constants >τ,⊥τ : τ for each different τ.

p1 : τ1, . . . , pn : τn ` p,>τ,⊥τ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ϕ : τ p1 : τ1, . . . , pn : τn ` ψ : τ
p1 : τ1, . . . , pn : τn ` ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ
p1 : τ1, . . . , pn : τn ` ¬ϕ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ^iϕ,�iϕ : τ′

14 / 23

Syntax
• Basic types τ.
• Each prop. variable p has a basic type p : τ.
• Each label i of modal operators has a type i : τ → τ′.
• Different prop. constants >τ,⊥τ : τ for each different τ.

p1 : τ1, . . . , pn : τn ` p,>τ,⊥τ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ϕ : τ p1 : τ1, . . . , pn : τn ` ψ : τ
p1 : τ1, . . . , pn : τn ` ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ
p1 : τ1, . . . , pn : τn ` ¬ϕ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ^iϕ,�iϕ : τ′

14 / 23

Syntax
• Basic types τ.
• Each prop. variable p has a basic type p : τ.
• Each label i of modal operators has a type i : τ → τ′.
• Different prop. constants >τ,⊥τ : τ for each different τ.

p1 : τ1, . . . , pn : τn ` p,>τ,⊥τ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ϕ : τ p1 : τ1, . . . , pn : τn ` ψ : τ
p1 : τ1, . . . , pn : τn ` ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ
p1 : τ1, . . . , pn : τn ` ¬ϕ : τ

p1 : τ1, . . . , pn : τn ` ϕ : τ ` i : τ → τ′

p1 : τ1, . . . , pn : τn ` ^iϕ,�iϕ : τ′

14 / 23

Frames and Models
Generate a category D from basic types τ and labels i : τ → τ′.

Kripke frames can then be generalized by
Def. A frame diagram in A is a n−o : Dop → A.

τ

τ′

nτo

nτ′o

A(nτo,1)

A(nτ′o,1)

nϕo

n^iϕo
i −nio nio;−

Let D∗ be D with an object ∗ and labels p : ∗ → τ added.
Def. A model diagram in A is a n−o : D∗op → A s.th. n∗o = 1.

∗

τ

1

nτo
p −npo ∈ A(nτo,1)

D may have more structure: e.g. † for temporal, ∪ for dynamic logics.

15 / 23

Frames and Models
Generate a category D from basic types τ and labels i : τ → τ′.
Kripke frames can then be generalized by
Def. A frame diagram in A is a n−o : Dop → A.

τ

τ′

nτo

nτ′o

A(nτo,1)

A(nτ′o,1)

nϕo

n^iϕo
i −nio nio;−

Let D∗ be D with an object ∗ and labels p : ∗ → τ added.
Def. A model diagram in A is a n−o : D∗op → A s.th. n∗o = 1.

∗

τ

1

nτo
p −npo ∈ A(nτo,1)

D may have more structure: e.g. † for temporal, ∪ for dynamic logics.

15 / 23

Frames and Models
Generate a category D from basic types τ and labels i : τ → τ′.
Kripke frames can then be generalized by
Def. A frame diagram in A is a n−o : Dop → A.

τ

τ′

nτo

nτ′o

A(nτo,1)

A(nτ′o,1)

nϕo

n^iϕo
i −nio nio;−

Let D∗ be D with an object ∗ and labels p : ∗ → τ added.
Def. A model diagram in A is a n−o : D∗op → A s.th. n∗o = 1.

∗

τ

1

nτo
p −npo ∈ A(nτo,1)

D may have more structure: e.g. † for temporal, ∪ for dynamic logics.

15 / 23

Frames and Models
Generate a category D from basic types τ and labels i : τ → τ′.
Kripke frames can then be generalized by
Def. A frame diagram in A is a n−o : Dop → A.

τ

τ′

nτo

nτ′o

A(nτo,1)

A(nτ′o,1)

nϕo

n^iϕo
i −nio nio;−

Let D∗ be D with an object ∗ and labels p : ∗ → τ added.
Def. A model diagram in A is a n−o : D∗op → A s.th. n∗o = 1.

∗

τ

1

nτo
p −npo ∈ A(nτo,1)

D may have more structure: e.g. † for temporal, ∪ for dynamic logics.

15 / 23

Interpretation
For propositions of type τ,

nϕ ∧ ψo = nϕo ∩ nψo = nϕo;nψo,
nϕ ∨ ψo = nϕo ∪ nψo,
nϕ⇒ ψo = nϕo\nψo,

n¬ϕo = nϕ⇒ ⊥τo,
n>τo = >(nτo,1),
n⊥τo = ⊥(nτo,1).

For i : τ → τ′, given nϕo : nτo→p 1,

n^iϕo = nio;nϕo : nτ′o→p 1,
n�iϕo = nio†\nϕo : nτ′o→p 1.

16 / 23

Example
Simpson’s (1994) semantics in terms of “birelation models”:
• A frame is a poset (X,6) plus R : X →p X s.th.

X

X

X

X

X

X

X

X
−6 −6

−

R

−
R
⊆
−6 −6

−

R†

−

R†

⊆

• Each npo ⊆ X is 6-upward closed.

This is to take our allegorical semantics in the allegory of posets and
bisimulations.
(npo ⊆ X is 6-upward closed iff npo : X →p 1 is a bisimulation.)

17 / 23

Maps of diagrams and bisimulations
Def. A map of diagrams is a map-valued natural transformation.

nτo1

nτ′o1

nτo2

nτ′o2

−nio1

−nio2

ατ

ατ′

=
τ

τ′
i

Thm.

nτo1 nτo2

1

1

ατ

−

nϕo1
−
nϕo2

x y

=

18 / 23

Maps of diagrams and bisimulations
Def. A map of diagrams is a map-valued natural transformation.

nτo1

nτ′o1

nτo2

nτ′o2

−nio1

−nio2

ατ

ατ′

=
τ

τ′
i

Thm.

nτo1 nτo2

1

1

ατ

−

nϕo1
−
nϕo2

x y

=

18 / 23

Thm. The correspondence below extends to every A.

X

X

Y

Y

−R −S

−

T

−
T

⊆

X

X

Z

Z

Y

Y

−R −U −S

f

f

g

g

= =

Def. A bisimulation of diagrams is a span of maps.
Thm.

nτo1 H(τ) nτo2

1

1

ατ βτ

x z y

−

nϕo1 −

H(ϕ)

−

nϕo2

19 / 23

Thm. The correspondence below extends to every A.

X

X

Y

Y

−R −S

−

T

−
T

⊆

X

X

Z

Z

Y

Y

−R −U −S

f

f

g

g

= =

Def. A bisimulation of diagrams is a span of maps.

Thm.

nτo1 H(τ) nτo2

1

1

ατ βτ

x z y

−

nϕo1 −

H(ϕ)

−

nϕo2

19 / 23

Thm. The correspondence below extends to every A.

X

X

Y

Y

−R −S

−

T

−
T

⊆

X

X

Z

Z

Y

Y

−R −U −S

f

f

g

g

= =

Def. A bisimulation of diagrams is a span of maps.
Thm.

nτo1 H(τ) nτo2

1

1

ατ βτ

x z y

−
nϕo1 −

H(ϕ)

−

nϕo2

19 / 23

Duality and correspondence
For a nice enough A, we have order embeddings

∃−† : A(X,Y) → Pos(A(Y,1),A(X,1)),
and order-reversing embeddings

∀−† : A(X,Y) → Pos(A(Y,1),A(X,1)).

Thm. In such an A, the condition R1
†;R2 ⊆ R3;R4

† corresponds to
^2�4ϕ ` �1^3ϕ, ^1�3ϕ ` �2^4ϕ.

Indeed, (the intuitionistic version of) the much stronger “calculus for
correspondence” (Conradie et al. 2014) is sound in any division A
s.th. Map(A) is well-pointed.

20 / 23

Duality and correspondence
For a nice enough A, we have order embeddings

∃−† : A(X,Y) → Pos(A(Y,1),A(X,1)),
and order-reversing embeddings

∀−† : A(X,Y) → Pos(A(Y,1),A(X,1)).

Thm. In such an A, the condition R1
†;R2 ⊆ R3;R4

† corresponds to
^2�4ϕ ` �1^3ϕ, ^1�3ϕ ` �2^4ϕ.

Indeed, (the intuitionistic version of) the much stronger “calculus for
correspondence” (Conradie et al. 2014) is sound in any division A
s.th. Map(A) is well-pointed.

20 / 23

Duality and correspondence
For a nice enough A, we have order embeddings

∃−† : A(X,Y) → Pos(A(Y,1),A(X,1)),
and order-reversing embeddings

∀−† : A(X,Y) → Pos(A(Y,1),A(X,1)).

Thm. In such an A, the condition R1
†;R2 ⊆ R3;R4

† corresponds to
^2�4ϕ ` �1^3ϕ, ^1�3ϕ ` �2^4ϕ.

Indeed, (the intuitionistic version of) the much stronger “calculus for
correspondence” (Conradie et al. 2014) is sound in any division A
s.th. Map(A) is well-pointed.

20 / 23

Standard translation into categorical logic of Map(A).
(x : T | tr(p : τ)) = (x : T | Px),

(x : T | tr(⊥ : τ)) = (x : T | x , x),

(x : T | tr(ϕ ∧ ψ : τ)) = (x : T | tr(ϕ : τ) ∧ tr(ψ : τ)),
(x : T | tr(�iϕ : τ)) = (x : T | ∀y : T ′ (Rixy ⇒ tr(ϕ : τ′)[y/x]),
(x : T | tr(^iϕ : τ)) = (x : T | ∃y : T ′ (Rixy ∧ tr(ϕ : τ′)[y/x]).

21 / 23

Logic of the semantics
Since ∃R† and ∀R† are left and right adjoints,

ϕ `τ ψ

^ϕ `τ′ ^ψ
^(ϕ ∨ ψ) `τ′ ^ϕ ∨ ^ψ

^⊥τ `τ′ ⊥τ′

ϕ `τ ψ

�ϕ `τ′ �ψ
�ϕ ∧ �ψ `τ′ �(ϕ ∧ ψ)

>τ′ `τ′ �>τ

The following are sound by the modular law.
^ϕ ∧ �χ ` ^(ϕ ∧ χ)

(^ϕ⇒ �ψ) ` �(ϕ⇒ ψ)

This is in fact a typed version of IK (the logic of Simpson’s (1994)
semantics). Call it tIK.
Thm. tIK is sound and complete w.r.t. all allegorical semantics.

22 / 23

Logic of the semantics
Since ∃R† and ∀R† are left and right adjoints,

ϕ `τ ψ

^ϕ `τ′ ^ψ
^(ϕ ∨ ψ) `τ′ ^ϕ ∨ ^ψ

^⊥τ `τ′ ⊥τ′

ϕ `τ ψ

�ϕ `τ′ �ψ
�ϕ ∧ �ψ `τ′ �(ϕ ∧ ψ)

>τ′ `τ′ �>τ
The following are sound by the modular law.

^ϕ ∧ �χ ` ^(ϕ ∧ χ)
(^ϕ⇒ �ψ) ` �(ϕ⇒ ψ)

This is in fact a typed version of IK (the logic of Simpson’s (1994)
semantics). Call it tIK.
Thm. tIK is sound and complete w.r.t. all allegorical semantics.

22 / 23

Logic of the semantics
Since ∃R† and ∀R† are left and right adjoints,

ϕ `τ ψ

^ϕ `τ′ ^ψ
^(ϕ ∨ ψ) `τ′ ^ϕ ∨ ^ψ

^⊥τ `τ′ ⊥τ′

ϕ `τ ψ

�ϕ `τ′ �ψ
�ϕ ∧ �ψ `τ′ �(ϕ ∧ ψ)

>τ′ `τ′ �>τ
The following are sound by the modular law.

^ϕ ∧ �χ ` ^(ϕ ∧ χ)
(^ϕ⇒ �ψ) ` �(ϕ⇒ ψ)

This is in fact a typed version of IK (the logic of Simpson’s (1994)
semantics). Call it tIK.

Thm. tIK is sound and complete w.r.t. all allegorical semantics.

22 / 23

Logic of the semantics
Since ∃R† and ∀R† are left and right adjoints,

ϕ `τ ψ

^ϕ `τ′ ^ψ
^(ϕ ∨ ψ) `τ′ ^ϕ ∨ ^ψ

^⊥τ `τ′ ⊥τ′

ϕ `τ ψ

�ϕ `τ′ �ψ
�ϕ ∧ �ψ `τ′ �(ϕ ∧ ψ)

>τ′ `τ′ �>τ
The following are sound by the modular law.

^ϕ ∧ �χ ` ^(ϕ ∧ χ)
(^ϕ⇒ �ψ) ` �(ϕ⇒ ψ)

This is in fact a typed version of IK (the logic of Simpson’s (1994)
semantics). Call it tIK.
Thm. tIK is sound and complete w.r.t. all allegorical semantics.

22 / 23

Future Work

• More on bisimulation theorems. In particular, Hennessy-Milner
and van Benthem-type theorems.
• More variants of modal logic. E.g. fixed point logic.
• Axiomatization of smaller fragments. E.g. without division
structure.
• Axiomatization of particular base logics. E.g. the allegory of
fuzzy relations.
• In particular, Rel(C) as models of quantum theory (Heunen-Tull
2015).
• Diagrammatic methods for the distribution and division
structures.

23 / 23

	Introduction
	Goals
	Kripke Semantics
	Perspectives
	Some Variants of Modal Logic

	Semantics Using Rel (take 1)
	Rel and caBa
	Duality
	Higher Duality

	Semantics in Rel (take 2)
	Allegories
	Definition
	Allegories and Regular Categories
	Subobjects
	Distributive and Division Allegories

	Allegorical Semantics
	Basic Idea
	Syntax
	Frames and Models
	Interpretation
	Example: Birelational Models
	Maps of Diagrams
	Bisimulations of Diagrams
	Duality and Correspondence
	Standard Translation
	The Logic of the Semantics

	Future Work

