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The problem: image segmentation

Reprinted ”The 2.1-D Sketch”, [Mumford & Nitzberg 1990].



The problem: image segmentation

Figure 1: Are C1,C2,C3 distinct objects or part of an occluded one? [Mumford &
Nitzberg 1990]

Without the context clues provided by occlusion, the depth of objects
relative to others in a scene cannot be determined.
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The problem: image segmentation

Forward problem: Given objects in an image, how do they compose to yield
patterns of occlusion ordered by depth? What are all possible orderings?

Inverse problem: Given an occlusion pattern for an image, how does it
decompose into different occluded segments? What are all possible
decompositions?

Image processing Monoidal structures

Forward problem Monoids
Inverse problem Comonoids

Generating series Combinatorial species
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The problem: image segmentation

Image processing Monoidal structures

Forward problem Monoids
Inverse problem Comonoids

Generating series Combinatorial species

A monoid in a monoidal category (C , •) is a triple (A, µ, ι) such that

µ : A • A→ A and ι : I → A



The problem: image segmentation

Figure 2: The Kanizsa triangle optical illusion.



The problem: image segmentation

Figure 3: A 2.1-D sketch of the Kanizsa triangle. [Mumford & Nitzberg 1990]

The layers of a 2.1-D sketch comprise ordered partitions, or set
compositions.
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Set compositions and linear orders

Let I be a finite set. A composition of I is a finite sequence (I1, . . . , Ik) of
disjoint nonempty subsets of I such that

I =
k⋃

i=1

Ii .

The subsets Ii are the blocks of the composition. We write F � I to
indicate that F = (I1, . . . , Ik) is a composition of I .



Occlusion monoids

Set monoid example: the ”atop monoid” in Haskell’s diagrams

Figure 4: Superimposing a list of primitives, [Yorgey 2012].

Unitality
© a ∅ = ∅ a ©

Associativity
© a (4 a �) = (© a 4) a �



Occlusion monoids

A set species is a functor

q : Set× → Set

Example: Species of linear orders

Figure 5: Linear orders on three elements, [Yorgey 2012].



Occlusion monoids

The linear order species is a functor from the groupoid of linearly ordered

L→ FinSet

finite sets with order-preserving bijections as morphisms to the category of
sets with total functions as morphisms.

The linear order species L[I ] on a finite set of labels I encodes all possible
orderings of its elements under a linear order.



Occlusion monoids

The linear order species is a functor from the groupoid of linearly ordered

L→ FinSet

finite sets with order-preserving bijections as morphisms to the category of
sets with total functions as morphisms.

L = 1 + X · L

Recursively,
L = 1 + X + X 2 . . .



Occlusion monoids

Image segmentation Combinatorial products Monoidal products

Layer concatenation Ordinal sum L[S ] a L[T ]→ L[I ]
Segment decomposition Deshuffling L[I ]→ L|S a L|T

For the species L of linear orders, we define the product as concatenation

L[S ]⊗ L[T ]→ L[I ]

l1 a l2 7→ l1 · l2
and coproduct as deshuffling

L[I ]→ L[S ]⊗ L[T ]

l 7→ l|S a l|T



4 a © = l1 · l2
© a 4 = l2 · l1



Deshuffling via Day convolution

F · G[I ] =
∑

I=StT
F [S ]⊗ G [T ]



Given a set of labels I = {a, b, c},

F · G[I ] = (F [abc] a G [∅]) + (F [∅] a G [abc])

+ (F [ab] a G [c]) + (F [a] + G [bc])

+ (F [c] a G [ab]) + (F [bc] + G [a])

+ (F [b] a G [ac]) + (F [ac] + G [b])



Occlusion monoids

The total preorder species is a functor from the groupoid of

T→ FinSet

finite sets with totally preordered elements and order-preserving bijections
as morphisms to Set.

The total preorder species T[I ] on a finite set of labels I encodes all
possible arrangements of its elements under a total preorder.

Image segmentation Combinatorial products Monoidal products

Layer concatenation Solomon-Tits algebra Σ[S ] a Σ[T ]→ Σ[I ]
Segment decomposition Deshuffling Σ[I ]→ Σ|S a Σ|T
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Generating series

For any species F, we have the exponential generating function

F(x) =
∑
n≥0

fn
xn

n!

which is a formal power series whose coefficients count F-structures.

L(x) =
∑
n≥0

n!
xn

n!
=

∑
n≥0

xn =
1

1− x
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Generating series

We obtain the generating function for T

1

2− ex

by substituting the e.g.f. for the uniform nonempty species, ex − 1, into
the o.g.f. for the linear order species,

1

1− x

.

We have:
1

1− (ex − 1)
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2− ex



Generating series

We obtain the generating function for T

1

2− ex

by substituting the e.g.f. for the uniform nonempty species, ex − 1, into
the o.g.f. for the linear order species,

1

1− x

. We have:
1

1− (ex − 1)
=

1

2− ex



Enumerating occlusions

We enumerate the 13 possible occlusion patterns of the Kanizsa triangle
under a total preorder.

First, we count the number of occlusion patterns possible (under a total
preorder) in the abstract using our generating function, the coefficients of
which can be derived from the Stirling numbers of the second kind S(n, k).

Partitions ∑
n≥1

S(n, k)xn = ee
x−1, coeff. ≈ n!

(log n)n

Compositions∑
n≥1

k!S(n, k)xn =
1

2− ex
, coeff. ≈ n!

2(log 2)n+1
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Consider a total preorder on the set of n elements. The noncommutative
operation of occlusion corresponds to strict inequalities, and equality
indexes which elements are “tied” or equal in the ordering.

A 3 element
set admits 13 such orderings.
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4 a ∇ a © = l1 · l2 · l3
© a 4 a ∇ = l3 · l1 · l2
∇ a © a 4 = l2 · l3 · l1



First, the trivial one given by the one block partition:

Type (3)

4∪∇ ∪©

Then, the 6 linear orders:

Type (1,1,1)

4 a ∇ a ©

© a 4 a ∇

∇ a © a 4
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Finally, the 6 compositions using both occlusion and disjoint union:

Type (2, 1)

(4∪∇) a ©

(©∪4) a ∇

(∇∪©) a 4

Type (1, 2)

4 a (∇∪©)

© a (4∪∇)

∇ a (©∪4)



Total preorder on Kanizsa occlusions



Distance between occlusion patterns

Let I = S t T and F = (I1, . . . , Ik) � I . The Schubert statistic is defined
by

schS ,T (F ) := |{(i , j) ∈ S × T | i is in a strictly later block of F than j}|.

Alternatively,

schS ,T (F ) =
∑

1≤i<j≤k
|Ii ∩ T | |Ij ∩ S |.

Image segmentation Combinatorial products Monoidal products

Pattern difference Schubert statistic |S × T |, j < i in F
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Operads from combinatorial species

Given a composition F = F 1| · · · |F k � I , we write

q(F ) := q[F 1]⊗ · · · ⊗ q[F k ]

Given a partition X of I , we write

q(X ) :=
⊗
S∈X

q[S ]

These are the unbracketed resp. unordered tensor powers of vector spaces.



Operads from combinatorial species

An operad is a monoid in (Sp, ◦,X), or a species p together with
morphisms of species γ : p ◦ p→ p and η : X→ p (which are associative
and unital).

This defintion yields a map

γF : p[X ]⊗
⊗
x∈X

p[f −1(x)]→ p[I ]

Example: Species of linear orders

L[X ]⊗
⊗
S∈X

L[S ]→ L[I ]

lx ⊗
⊗
S∈X

lS 7→ lI



Thank You!
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