Enriched Lawvere Theories for Operational Semantics

John C. Baez
Christian Williams

University of California, Riverside

SYCO 4, May 22 2019
How do we integrate syntax and semantics?

object type
morphism term
* 2-morphism rewrite *
algebraic theories: denotational semantics

\[(ab)c = a(bc)\]

enriched theories: operational semantics
Lawvere theories

Th(Mon)

- **type**: M monoid

- **operations**
 - $m: M^2 \to M$ multiplication
 - $e: 1 \to M$ identity

- **equations**

```
\begin{align*}
M^3 & \to M^2 \\
\downarrow & \downarrow \\
M^2 & \to M^2 \\
\downarrow & \downarrow \\
M^2 & \to M \\
\downarrow & \\
1 \times M & \to M \\
\downarrow & \\
M & \to M \\
\downarrow & \\
M & \to M \times 1
\end{align*}
```
Enriched theories

\[\text{Th}(\text{PsMon}) \]

type

- M pseudomonoid

operations

- \(\otimes : M^2 \to M \) multiplication
- \(\text{id} : 1 \to M \) identity

rewrites

\[
\begin{array}{c}
M^3 \xrightarrow{\alpha} M^2 \\
M^2 \xrightarrow{\lambda} M^2 \\
1 \times M \xrightarrow{\lambda} M \\
M \xrightarrow{\rho} M^2 \\
M \times 1 \xleftarrow{\rho} M^2 \\
\end{array}
\]

equations

- pentagon, triangle identities
Enriched categories

Let V be monoidal. A V-enriched category has hom-objects in V; composition and identity are morphisms in V, as are the components of a V-functor and a V-natural transformation:

- **V-category** $C(a, b) \in V$
- **V-functor** $F_{ab} : C(a, b) \to D(F(a), F(b)) \in V$
- **V-transformation** $\varphi_a : 1_V \to D(F(a), G(a)) \in V$.

These form the 2-category VCat.
Our enriching category

Let \(V \) be a cartesian closed category:

\[
V(a \times b, c) \cong V(a, [b, c]).
\]

Then \(V \in V\text{Cat}. \)

Let \(V \in \text{CCC}_{fc(1)} \), meaning assume and choose:

\[
n_V := \sum_n 1_V.
\]

Let \(N_V := \{n_V | n \in \mathbb{N}\} \subset_{\text{full}} V \)

and \(A_V := N_V^{\text{op}} \) — our “arities”.
Enriched products

The **V-product** of \((a_i) \in C\) is an object \(\prod_i a_i \in C\) equipped with a **V-natural isomorphism**

\[
C(\dash, \prod_i a_i) \cong \prod_i C(\dash, a_i).
\]

A **V-functor** \(F : C \to D\) **preserves** V-products if the “projections” induce a V-natural isomorphism:

\[
D(\dash, F(\prod_i a_i)) \cong \prod_i D(\dash, F(a_i)).
\]

Let \(\text{VCat}_{fp}\) be the 2-category of V-categories with finite V-products and V-functors preserving them.
Enriched Lawvere theories

Definition

A *V-theory* is a V-category $T \in V\text{Cat}_{fp}$ whose objects are finite V-products of a distinguished object.

A morphism of V-theories is a V-functor $F : T \to T' \in V\text{Cat}_{fp}$. These and V-natural transformations form the 2-category of V-theories, $V\text{Law}$.
Enriched models

Definition

A **context** is a V-category $C \in VCat_{fp}$.

A **model** of T is a V-functor

$$\mu : T \rightarrow C \in VCat_{fp}.$$

The category of models is $Mod(T, C) := VCat_{fp}(T, C)$.
Example: monoidal categories

Let \(V = \text{Cat} \).

\[
\text{Th}(\text{PsMon})
\]

type \(M \) pseudomonoid

operations

\(\otimes : M^2 \rightarrow M \) multiplication

\(I : 1 \rightarrow M \) identity

rewrites

\[
\begin{align*}
\triangleleft \ & \downarrow \alpha \\
M^3 & \rightarrow M^2 \\
\downarrow & \\
M^2 & \rightarrow M
\end{align*}
\]

\[
\begin{align*}
\uparrow \lambda & \ \\
1 \times M & \rightarrow M^2 \\
& \rightarrow M \\
& \leftarrow M^2
\end{align*}
\]

\[
\begin{align*}
\uparrow \rho & \\
M & \leftarrow M^2 \\
& \rightarrow M \times 1
\end{align*}
\]

equations pentagon, triangle identities
Example: cartesian object

Let $V = \text{Cat}$.

\[
\begin{array}{llll}
\text{type} & X & \text{cartesian object} \\
\text{operations} & m: X^2 \to X & \text{product} \\
 & e: 1 \to X & \text{terminal element} \\
\text{rewrites} & \Delta: \text{id}_X \Rightarrow m \circ \Delta_X & \text{unit of } m \vdash \Delta_X \\
 & \pi: \Delta_X \circ m \Rightarrow \text{id}_{X^2} & \text{counit of } m \vdash \Delta_X \\
 & \top: \text{id}_X \Rightarrow e \circ !_X & \text{unit of } e \vdash !_X \\
 & \epsilon: !_X \circ e \Rightarrow \text{id}_1 & \text{counit of } e \vdash !_X \\
\text{equations} & \text{triangle identities} \\
\end{array}
\]
Change of base

Let $F : V \to W$ preserve finite products, and $C \in V\text{Cat}$.

Then F induces a change of base:

$$F_*(C)(a, b) := F(C(a, b)).$$

This gives a 2-functor

$$F_* : V\text{Cat} \to W\text{Cat}.$$

Enrichment provides semantics, so change of base should preserve theories to be a change of semantics.
Preservation of theories

Theorem

Let \(F : V \to W \in \text{CCC}_{fc(1)} \).

Then \(F \) is a **change of semantics**:

\[\tau_W := A_W \sim F^*(A_V) \xrightarrow{F^*(\tau_V)} F^*(T) \text{ is a } W\text{-theory.} \]

\(F^* \) preserves models. For every model \(\mu : T \to C \),

\[F^*(\mu) : F^*(T) \to F^*(C) \text{ is a model of } (F^*(T), \tau_W). \]
Change of semantics

There is a “spectrum” of semantics:

\[
\begin{array}{cccc}
\text{Gph} & \text{Cat} & \text{Pos} & \text{Set} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\text{FC} & \text{FP} & \text{FS} & \text{UG} \quad \text{UC} \quad \text{UP} \\
\end{array}
\]

- \(\text{FC}_*\) maps small-step to big-step operational semantics.
- \(\text{FP}_*\) maps big-step to full-step operational semantics.
- \(\text{FS}_*\) maps full-step to denotational semantics.
The theory of SKI

\[
\text{Th}(\text{SKI})
\]

<table>
<thead>
<tr>
<th>type</th>
<th>(t)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>terms</th>
<th>(S : 1 \to t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K : 1 \to t)</td>
</tr>
<tr>
<td></td>
<td>(I : 1 \to t)</td>
</tr>
<tr>
<td></td>
<td>((_ - _): t^2 \to t)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rewrites</th>
<th>(\sigma : (((S \ a) \ b) \ c) \Rightarrow ((a \ c) \ (b \ c)))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\kappa : ((K \ a) \ b) \Rightarrow a)</td>
</tr>
<tr>
<td></td>
<td>(\iota : (I \ a) \Rightarrow a)</td>
</tr>
</tbody>
</table>
A model of Th(SKI)

A Gph-product preserving Gph-functor $\mu : \text{Th}(\text{SKI}) \to \text{Gph}$ yields a graph $\mu(t)$ of SKI-terms:

$$1 \cong \mu(1) \xrightarrow{\mu(S)} \mu(t) \xleftarrow{\mu(\neg \neg)} \mu(t^2) \cong \mu(t)^2.$$

The rewrites are transferred by the enrichment of μ:

$$\mu_{1,t} : \text{Th}(\text{SKI})(1, t) \to \text{Gph}(1, \mu(t)).$$
The free model of SKI

The syntax and semantics of the SKI combinator calculus are given by the free model

\[\mu^{Gph}_{SKI} := \text{Th}(SKI)(1, -): \text{Th}(SKI) \to Gph. \]

The graph \(\mu^{Gph}_{SKI}(t) \) is the transition system which represents the small-step operational semantics of the SKI-calculus:

\[(\mu(a) \to \mu(b) \in \mu^{Gph}_{SKI}(t)) \iff (a \Rightarrow b \in \text{Th}(SKI)(1, t)). \]
Change of semantics

FC: Gph → Cat preserves products, hence gives a change of semantics from small-step to big-step operational semantics:

\[
\begin{align*}
(((S \mathcal{K})(I \mathcal{K})) S) \\
(((S \mathcal{K}) K) S) \\
((K S)(K S))
\end{align*}
\]

FP: Cat → Pos gives full-step (Hasse diagram), and
FS: Pos → Set gives denotational semantics, collapsing the connected component to a point.
Conclusion

Enriched theories give a way to unify the structure and behavior of formal languages.

Enriching in category-like structures reifies operational semantics by incorporating rewrites between terms.

Cartesian functors between enriching categories induce change-of-semantics functors between categories of models.
This paper builds on the ideas of Mike Stay and Greg Meredith presented in “Representing operational semantics with enriched Lawvere theories”.

We gratefully acknowledge the support of Pyrofex Corporation, and we appreciate their letting us develop this work for the distributed computing system RChain.
References I

References II

M. Stay and L. G. Meredith, Representing operational semantics with enriched Lawvere theories.