Bundles, Lenses & Machine Learning

Jules Hedges\(^1\)
joint work with
Brendan Fong\(^2\) Eliana Lorch\(^3\) David Spivak\(^2\)

\(^1\)Max Planck Institute for Mathematics in the Sciences

\(^2\)MIT

\(^3\)University of Oxford

SYCO 5, Birmingham
Bundles, Lenses & Machine Learning

Jules Hedges1
joint work with
Brendan Fong2 Eliana Lorch3 David Spivak2

1Max Planck Institute for Mathematics in the Sciences
2MIT
3University of Oxford

SYCO 5, Birmingham

Featuring zero string diagrams :(
Motivation

Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)

+ ML as differential geometry
Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)

ML as differential geometry

In this talk: *smoosh them together*

(why? Why not)
Machine learning is categorical in 2 different ways:

Backprop As Functor
(compositional description of ML with monoidal categories)

+ ML as differential geometry

In this talk: smoosh them together

(why? Why not)

It clarifies Backprop as Functor more than anything else
Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set P of parameters
Open learners

Definition (Fong, Spivak & Tuyéras): An open learner \(X \rightarrow Y \) consists of:

- A set \(P \) of parameters
- A function \(I : P \times X \rightarrow Y \) (the implementation)

Composition of open learners is fiddly
They form a symmetric monoidal category called Learn
Who cares about monoidal bicategories
Open learners

Definition (Fong, Spivak & Tuyéras): An open learner $X \to Y$ consists of:

- A set P of parameters
- A function $I : P \times X \to Y$ (the implementation)
- A function $u : P \times X \times Y \to P$ (the update)
Open learners

Definition (Fong, Spivak & Tuyéras): An open learner $X \to Y$ consists of:

- A set P of parameters
- A function $I : P \times X \to Y$ (the implementation)
- A function $u : P \times X \times Y \to P$ (the update)
- A function $r : P \times X \times Y \to X$ (the request)
Open learners

Definition (Fong, Spivak & Tuyéras) : An open learner $X \rightarrow Y$ consists of:

- A set P of parameters
- A function $I : P \times X \rightarrow Y$ (the implementation)
- A function $u : P \times X \times Y \rightarrow P$ (the update)
- A function $r : P \times X \times Y \rightarrow X$ (the request)

Composition of open learners is fiddly
Open learners

Definition (Fong, Spivak & Tuyéras): An open learner $X \to Y$ consists of:

- A set P of parameters
- A function $I : P \times X \to Y$ (the implementation)
- A function $u : P \times X \times Y \to P$ (the update)
- A function $r : P \times X \times Y \to X$ (the request)

Composition of open learners is fiddly

They form a symmetric monoidal category called **Learn**

who cares about monoidal bicategories
A lens $X \to Y$ is a function $X \to Y$ and a function $X \times Y \to X$. Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by pullback of lenses:

$P \times Q \times X \to P \times X \\downarrow \\uparrow \\pi_2 \\ell_1 \\pi_2 \\ell_2 \hspace{1cm} Q \times Y \to X \hspace{1cm}$
A lens $X \rightarrow Y$ is a function $X \rightarrow Y$ and a function $X \times Y \rightarrow X$.

Composition of lenses is also fiddly!
A lens $X \to Y$ is a function $X \to Y$ and a function $X \times Y \to X$.

Composition of lenses is also fiddly!

Theorem (Fong & Johnson): Open learners compose by pullback of lenses:

$$
egin{array}{c}
 P \times Q \times X \\
 \downarrow \\
 P \times X \\
 \downarrow \ell_1 \\
 X \\
 \downarrow \pi_2 \\
 \\
 \downarrow \\
 Y \\
 \downarrow \pi_2 \\
 Q \times Y \\
 \downarrow \ell_2 \\
 Z
\end{array}
$$

The Para construction

Let C be a monoidal category

Define a category\(^1\) $\text{Para}(C)$ by:

\(^1\)who cares about monoidal bicategories
Let \mathcal{C} be a monoidal category

Define a category\(^1\) **Para**(\mathcal{C}) by:

- **Objects**: objects of \mathcal{C}
- **Morphisms** $X \to Y$: pair (A, f), A object of \mathcal{C}, $f : X \otimes A \to Y$

\(^1\) who cares about monoidal bicategories
The Para construction

Let C be a monoidal category

Define a category $\text{Para}(C)$ by:

- **Objects**: objects of C
- **Morphisms** $X \to Y$: pair (A, f), A object of C, $f : X \otimes A \to Y$
- **Identity on** X: $(I, X \otimes I \overset{\text{ir}}{\to} X)$

1 who cares about monoidal bicategories
The **Para** construction

Let \mathcal{C} be a monoidal category

Define a category

\[\text{Para}(\mathcal{C}) \]

by:

- **Objects**: objects of \mathcal{C}
- **Morphisms** $X \to Y$: pair (A, f), A object of \mathcal{C}, $f : X \otimes A \to Y$
- **Identity on X**: $(I, X \otimes I \xrightarrow{\cong} X)$
- **Composition of $(B, g) \circ (A, f)$**:

\[
(A \otimes B, X \otimes A \otimes B \xrightarrow{f \otimes B} Y \otimes B \xrightarrow{g} Z)
\]

\[1\text{who cares about monoidal bicategories}\]
Let \mathcal{C} be a monoidal category

Define a category\(^1\) $\text{Para}(\mathcal{C})$ by:

- **Objects**: objects of \mathcal{C}
- **Morphisms** $X \to Y$: pair (A, f), A object of \mathcal{C}, $f : X \otimes A \to Y$
- **Identity on** X: $(I, X \otimes I \xrightarrow{\text{id}} X)$
- **Composition of** $(B, g) \circ (A, f)$:

\[
(A \otimes B, X \otimes A \otimes B \xrightarrow{f \otimes B} Y \otimes B \xrightarrow{g} Z)
\]

\otimes lifts to a monoidal product on $\text{Para}(\mathcal{C})$

\(^1\)who cares about monoidal bicategories
The structure of \(\text{Para}(-) \)

A lax symmetric monoidal functor \(F : \mathcal{C} \to \mathcal{D} \) lifts to

\[
\text{Para}(F) : \text{Para}(\mathcal{D}) \to \text{Para}(\mathcal{D})
\]

by

\[
F(A, f) : F(X) \otimes F(A) \xrightarrow{\varphi} F(X \otimes A) \xrightarrow{F(f)} F(Y)
\]
The structure of \(\text{Para}(___) \)

A lax symmetric monoidal functor \(F : \mathcal{C} \to \mathcal{D} \) lifts to

\[
\text{Para}(F) : \text{Para}(\mathcal{D}) \to \text{Para}(\mathcal{D})
\]

by

\[
F(A, f) : F(X) \otimes F(A) \xrightarrow{\varphi} F(X \otimes A) \xrightarrow{F(f)} F(Y)
\]

\[\textbf{Proposition}\ (\text{probably}):\ \text{Para}(__)\ \text{defines a monad on}\]

\[\text{[symmetric monoidal categories, lax symmetric monoidal functors]}\]
Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a **learning rate** $\varepsilon > 0$ and a differentiable **cost function** $C : \mathbb{R}^2 \to \mathbb{R}$.

2such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible
Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function $^2 C : \mathbb{R}^2 \to \mathbb{R}$.

Then there is a symmetric monoidal functor $F_{\varepsilon, C} : \text{Para(Euc)} \to \text{Learn}$ defined by

- On objects $X \mapsto$ underlying set of X

2such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible
Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function $^2 C : \mathbb{R}^2 \to \mathbb{R}$.

Then there is a symmetric monoidal functor $F_{\varepsilon, C} : \text{Para}(\text{Euc}) \to \text{Learn}$ defined by

- On objects $X \mapsto$ underlying set of X
- On morphisms $f : P \times X \to Y$:
 - Parameters P
 - Implementation $I = f$

\[\text{such that every } \frac{\partial}{\partial y} C(x, y) \text{ is invertible}\]
Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function $^2 C : \mathbb{R}^2 \to \mathbb{R}$.

Then there is a symmetric monoidal functor $F_{\varepsilon, C} : \text{Para(Euc)} \to \text{Learn}$ defined by

- On objects $X \mapsto$ underlying set of X
- On morphisms $f : P \times X \to Y$:
 - Parameters P
 - Implementation $I = f$
 - Update $U(a, x, y) = a - \varepsilon \nabla_a E(a, x, y)$
 - Request $r(a, x, y) = \text{(too awkward to write down)}$

where $E(a, x, y) = \sum_{i=1}^{\text{dim}(Y)} C(f(p, x)_i, y_i)$ is total error

2such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible
Backprop as Functor

Theorem (Fong, Spivak & Tuyéras): Fix a learning rate $\varepsilon > 0$ and a differentiable cost function $^2 C : \mathbb{R}^2 \to \mathbb{R}$.

Then there is a symmetric monoidal functor $F_{\varepsilon, C} : \text{Para}(\text{Euc}) \to \text{Learn}$ defined by

- **On objects** $X \mapsto$ underlying set of X
- **On morphisms** $f : P \times X \to Y$:
 - Parameters P
 - Implementation $I = f$
 - Update $U(a, x, y) = a - \varepsilon \nabla_a E(a, x, y)$
 - Request $r(a, x, y) = (\text{too awkward to write down})$

where $E(a, x, y) = \sum_{i=1}^{\text{dim}(Y)} C(f(p, x)_i, y_i)$ is total error

Update is gradient descent, and request is backpropagation

2such that every $\frac{\partial}{\partial y} C(x, y)$ is invertible
ML doesn’t work like that

Actual backpropagation backpropagates gradients
ML doesn’t work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction
ML doesn’t work like that

Actual backpropagation backpropagates **gradients**

Request backpropagates a **finite step** in the gradient direction

This is a hack because objects of **Learn** doesn’t have differentiable structure
ML doesn’t work like that

Actual backpropagation backpropagates gradients

Request backpropagates a finite step in the gradient direction

This is a hack because objects of Learn doesn’t have differentiable structure

(The benefit is Learn is more general than just ML)
Work in a category with finite limits

A **bundle** over X is a morphism $\xymatrix{E \ar[r]_p & X}$
Bundles, Lenses & Machine Learning

Motivation
Backprop as Functor
Bundles
Putting it together

Bundles

Work in a category with finite limits

A bundle over X is a morphism $E \xrightarrow{p} X$

Examples:

1. Trivial bundle $\xrightarrow{\pi_1} X$

2. Tangent bundle over a differentiable manifold $T_M \pi$

3. Cotangent bundle $T^* M \pi^*$
Work in a category with finite limits

A bundle over X is a morphism $E \xrightarrow{p} X$

Examples:

1. **Trivial bundle** $X \times Y \xrightarrow{\pi_1} X$

2. **Tangent bundle** over a differentiable manifold $TM \xrightarrow{\pi} M$
Bundles

Work in a category with finite limits

A bundle over X is a morphism $E \xrightarrow{p} X$

Examples:

1. **Trivial bundle**

 $X \times Y \xrightarrow{\pi_1} X$

2. **Tangent bundle** over a differentiable manifold

 $T\mathcal{M} \xrightarrow{\pi} \mathcal{M}$

3. **Cotangent bundle**

 $T^*\mathcal{M} \xrightarrow{\pi^*} \mathcal{M}$
Bundles over Euclidean spaces

If $X = \mathbb{R}^n$ is a Euclidean space then

- every $T_x(X) \cong X$
Bundles over Euclidean spaces

If $X = \mathbb{R}^n$ is a Euclidean space then

- every $T_x(X) \cong X$
- so, $T(X) \cong X \times X$
Bundles over Euclidean spaces

If $X = \mathbb{R}^n$ is a Euclidean space then

- every $T_x(X) \cong X$
- so, $T(X) \cong X \times X$

- so, the tangent bundle is trivial:

$$
\begin{array}{ccc}
T(X) & \downarrow \pi_2 \\
\hookrightarrow & & \\
X & & \\
\end{array}
$$
Bundles over Euclidean spaces

If $X = \mathbb{R}^n$ is a Euclidean space then

- every $T_x(X) \cong X$
- so, $T(X) \cong X \times X$

Moreover:

- every $T^*_x(X) \cong X \text{ unnaturally} \ (\text{since } X^* \cong X)$
Bundles over Euclidean spaces

If $X = \mathbb{R}^n$ is a Euclidean space then

- every $T_x(X) \cong X$
- so, $T(X) \cong X \times X$

Moreover:

- every $T^*_x(X) \cong X$ unnaturally (since $X^* \cong X$)
- so, $T^*(X) \cong X \times X$ unnaturally
Bundles over Euclidean spaces

If $X = \mathbb{R}^n$ is a Euclidean space then

- every $T_x(X) \cong X$
- so, $T(X) \cong X \times X$

Moreover:

- every $T^*_x(X) \cong X$ unnaturally (since $X^* \cong X$)
- so, $T^*(X) \cong X \times X$ unnaturally
- elements of $X \times X$ are called dual numbers
Bundles over Euclidean spaces

If $X = \mathbb{R}^n$ is a Euclidean space then

- every $T_x(X) \cong X$
- so, $T(X) \cong X \times X$

Moreover:

- every $T_x^*(X) \cong X$ unnaturally (since $X^* \cong X$)
- so, $T^*(X) \cong X \times X$ unnaturally
- elements of $X \times X$ are called dual numbers
- the cotangent bundle is unnaturally equivalent to a trivial bundle
Bundles over Euclidean spaces

If $X = \mathbb{R}^n$ is a Euclidean space then

- every $T_x(X) \cong X$
- so, $T(X) \cong X \times X$

Moreover:

- every $T_x^*(X) \cong X$ unnaturally (since $X^* \cong X$)
- so, $T^*(X) \cong X \times X$ unnaturally
- elements of $X \times X$ are called dual numbers
- the cotangent bundle is unnaturally equivalent to a trivial bundle

Nb. Euc doesn’t have finite limits, so we work in Top
Morphisms of bundles

A bundle morphism $f : E \xrightarrow{p} F \xrightarrow{q} X \times_Y F$ is:

- Morphisms $f : X \rightarrow Y$ and $f^\# : X \times Y \rightarrow E$ such that $X \times Y F \rightarrow E$ is a pullback.
- Equivalently: f such that $X \times Y F \rightarrow X$ factors through p.

"Every algebraic geometer knows this definition" – David Spivak
Morphisms of bundles

A bundle morphism $f : X \to Y$ and $f^\# : X \times_Y F \to E$
Morphisms of bundles

A bundle morphism $f : E \rightarrow F$ is:

- Morphisms $f : X \rightarrow Y$ and $f^\# : X \times_Y F \rightarrow E$
- such that

$$
\begin{array}{ccc}
X \times_Y F & \rightarrow & F \\
\downarrow f^\# & & \downarrow q \\
E & \rightarrow & Y
\end{array}
$$

is a pullback
Morphisms of bundles

A bundle morphism $f : E \rightarrow F$ is:

- Morphisms $f : X \rightarrow Y$ and $f^\#: X \times_Y F \rightarrow E$
- such that

$$
\begin{array}{ccc}
X \times_Y F & \longrightarrow & F \\
\downarrow^{f^\#} & & \downarrow \\
E & \longrightarrow & F \\
\downarrow^{p} & & \downarrow^{q} \\
X & \longrightarrow & Y \\
\end{array}
$$

is a pullback
- Equivalently: f such that $X \times_Y F \rightarrow X$ factors through p
Morphisms of bundles

A bundle morphism \(f : E \rightarrow F \) is:

- Morphisms \(f : X \rightarrow Y \) and \(f^\#: X \times_Y F \rightarrow E \)
- such that

\[
\begin{array}{ccc}
X \times_Y F & \rightarrow & F \\
\downarrow f^\# & & \downarrow \\
E & \rightarrow & q \\
\downarrow p & & \downarrow \\
X & \leftarrow f & \rightarrow Y
\end{array}
\]

is a pullback

- Equivalently: \(f \) such that \(X \times_Y F \rightarrow X \) factors through \(p \)

“Every algebraic geometer knows this definition” – David Spivak
The category of bundles

\[X \times_X E \cong E \]

Identity morphism:

\[\begin{array}{c}
E \\
\downarrow p \\
X
\end{array} \cong \begin{array}{c}
E \\
p \\
X
\end{array} \]
The category of bundles

Identity morphism:

\[X \times_X E \cong E \]

Composition of morphisms:

\[X \times_Z G \rightarrow X \times_Y F \rightarrow Y \times_Z G \rightarrow G \]

\[f^*(g^#) \rightarrow f^* (g^#) \rightarrow \]

\[E \rightarrow E \]

\[p \rightarrow p \]

\[X \rightarrow X \]

\[f \rightarrow f \]

| Motivation | Backprop as Functor | Bundles | Putting it together |
Where does this come from?

From the Grothendieck construction:

$$\text{Bund}(\mathcal{C}) = \int_{X \in \mathcal{C}} (\mathcal{C}/X)^{\text{op}}$$
Where does this come from?

From the Grothendieck construction:

$$\text{Bund}(\mathcal{C}) = \int_{X \in \mathcal{C}} (\mathcal{C}/X)^{\text{op}}$$

This buys us (conjecture) a monoidal structure:

$$\begin{array}{ccc}
E & F & E \times F \\
\downarrow p \otimes & \downarrow q = & \downarrow p \times q \\
X & Y & X \times Y
\end{array}$$

(this might not be the right one!)
A (bimorphic) lens $\lambda : (S, T) \to (A, B)$ consists of:

- a morphism $\lambda_v : S \to A$ called **view**
- a morphism $\lambda_u : S \times B \to T$ called **update**
A (bimorphic) lens $\lambda : (S, T) \to (A, B)$ consists of:

- a morphism $\lambda_v : S \to A$ called view
- a morphism $\lambda_u : S \times B \to T$ called update

Composition of lenses is fiddly
A (bimorphic) lens $\lambda : (S, T) \to (A, B)$ consists of:

- a morphism $\lambda_v : S \to A$ called view
- a morphism $\lambda_u : S \times B \to T$ called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

$$\text{Lens}(C) = \int_{X \in C} \text{coKl}(X \times -)^{op}$$
A (bimorphic) lens $\lambda : (S, T) \rightarrow (A, B)$ consists of:

- a morphism $\lambda_v : S \rightarrow A$ called view
- a morphism $\lambda_u : S \times B \rightarrow T$ called update

Composition of lenses is fiddly

Where does this come from? The Grothendieck construction:

$$\text{Lens}(C) = \int_{X \in C} \text{coKl}(X \times -)^{op}$$

Theorem (Lambek): $\text{coKl}(X \times -) \cong C[x]$, where $C[x]$ is the polynomial category formed by freely adjoining $x : 1 \rightarrow X$ and closing under finite products.
Lenses are bundle morphisms

Another theorem (Lambek): \(\text{coEM}(X \times -) \cong C/X \)
Lenses are bundle morphisms

Another theorem (Lambek): $\text{coEM}(X \times -) \cong \mathcal{C}/X$

So there is a canonical embedding $\mathcal{C}[x] \hookrightarrow \mathcal{C}/X$
Lenses are bundle morphisms

Another theorem (Lambek): $\text{coEM}(X \times -) \cong C/X$

So there is a canonical embedding $C[x] \hookrightarrow C/X$

Grothendieck them all together: $\text{Lens}(C) \to \text{Bund}(C)$
It takes a lens $\lambda : (S, T) \to (A, B)$ to the bundle morphism
Lenses are bundle morphisms

Another theorem (Lambek): \(\text{coEM}(X \times -) \cong \mathcal{C}/X \)

So there is a canonical embedding \(\mathcal{C}[x] \hookrightarrow \mathcal{C}/X \)

Grothendieck them all together: \(\text{Lens}(\mathcal{C}) \rightarrow \text{Bund}(\mathcal{C}) \)

It takes a lens \(\lambda : (S, T) \rightarrow (A, B) \) to the bundle morphism

\[
\begin{array}{ccc}
S \times B & \longrightarrow & A \times B \\
\downarrow_{\langle \pi_1, \lambda \nu \rangle} & & \downarrow \\
S \times T & \longrightarrow & \pi_2 \\
\downarrow_{\pi_2} & & \downarrow \pi_2 \\
S & \longrightarrow & A \\
\lambda \nu & & \\
\end{array}
\]
Morphisms of cotangent bundles

There is a functor $\text{Cot}(-) : \text{DiffMfd} \rightarrow \text{Bund}(\text{Top})$
Morphisms of contangent bundles

There is a functor \(\text{Cot}(_): \text{DiffMfd} \rightarrow \text{Bund}(\text{Top}) \)

It takes \(f : X \rightarrow Y \) to

\[
\begin{array}{ccc}
X \times_Y T^*(Y) & \longrightarrow & T^*(Y) \\
\downarrow_{f'} & & \downarrow \\
T^*(X) & \downarrow_{\pi^*} & \\
\downarrow_{\pi^*} & & \downarrow \\
X & \longrightarrow & Y
\end{array}
\]

where \(f' : (x, c) \mapsto (x, c \circ J_x(f)) \)
Morphisms of contangent bundles

There is a functor \(\text{Cot}(\cdot) : \text{DiffMfd} \to \text{Bund}(\text{Top}) \)

It takes \(f : X \to Y \) to

\[
\begin{array}{ccc}
X \times_Y T^*(Y) & \longrightarrow & T^*(Y) \\
\downarrow f' & & \downarrow \\
T^*(X) & \longrightarrow & T^*(Y) \\
\downarrow \pi^* & & \downarrow \\
X & \longrightarrow & Y
\end{array}
\]

where \(f' : (x, c) \mapsto (x, c \circ J_x(f)) \)

\(J_x(f) \) is the Jacobian (matrix of partial derivatives) of \(f \) at \(x \)
The chain rule

Functorality of $\text{Cot}(-)$:

\[
\begin{align*}
X \times_Z T^*(Z) & \xrightarrow{f^*(g')} Y \times_Z T^*(Z) & \xrightarrow{g'} T^*(Z) \\
X \times_Y T^*(Y) & \xrightarrow{f'} T^*(Y) & \xrightarrow{\pi^*} T^*(Y) \\
T^*(X) & \xrightarrow{\pi^*} & \\
X & \xrightarrow{f} & Y & \xrightarrow{g} & Z
\end{align*}
\]

$\pi^*(f^*(g')) \circ \pi^* = f^* \circ g'$ is the chain rule in differential geometry.
Functorality of $\text{Cot}(-)$:

\[
\begin{align*}
X \times Z & \xrightarrow{T^*(Z)} Y \times Z \xrightarrow{T^*(Z)} T^*(Z) \\
X \times Y & \xrightarrow{T^*(Y)} T^*(Y) \\
X & \xrightarrow{T^*(X)} Y \xrightarrow{T^*(Y)} Z
\end{align*}
\]

\[(g \circ f)' = f' \circ f^*(g')\] is the chain rule in differential geometry.
Consider a morphism of \(\text{Para}(\text{Bund}(\text{Top})) \) in the image of

\[
\text{Para}(ext{Cot}) : \text{Para}(ext{Euc}) \to \text{Para}(\text{Bund}(\text{Top}))
\]

It looks like

\[
(X \times A) \times_Y T^*(Y) \xrightarrow{f'} \rightarrow Y
\]

We're going to turn it into an open learner, given \(\varepsilon > 0 \) and differentiable \(C : \mathbb{R}^2 \to \mathbb{R} \).
From \(\text{Para}(\text{Bund}(\text{Top})) \) to \textbf{Learn}

Consider a morphism of \(\text{Para}(\text{Bund}(\text{Top})) \) in the image of

\[\text{Para}(\text{Cot}) : \text{Para}(\text{Euc}) \rightarrow \text{Para}(\text{Bund}(\text{Top})) \]

It looks like

\[
\begin{array}{ccc}
(X \times A) \times_Y T^*(Y) & \longrightarrow & Y \\
\downarrow^{f'} & & \downarrow \\
T^*(X \times A) & \underset{\pi^*}{\longrightarrow} & Y
\end{array}
\]

We’re going to turn it into an open learner, given \(\varepsilon > 0 \) and differentiable \(C : \mathbb{R}^2 \rightarrow \mathbb{R} \)
Obviously, **parameters** are A and **implementation** is f
The setup

Obviously, parameters are A and implementation is f

We need to define $\langle U, r \rangle : A \times X \times Y \rightarrow A \times X$

so, fix $a \in A$, $x \in X$ and $y \in Y$

and fix the total error $C_y(y') = \sum_{i=1}^{\dim(Y)} C(y_i, y'_i)$
The setup

Obviously, parameters are A and implementation is f

We need to define $\langle U, r \rangle : A \times X \times Y \to A \times X$

so, fix $a \in A$, $x \in X$ and $y \in Y$

and fix the total error $C_y(y') = \sum_{i=1}^{\dim(Y)} C(y_i, y'_i)$

Consider the diagram...
The brain exploding part

\[\mathbb{R} \cong T_{C_y(f(x,a))}(\mathbb{R}) \rightarrow (X \times A) \times_\mathbb{R} T^*(\mathbb{R}) \rightarrow Y \times_\mathbb{R} T^*(\mathbb{R}) \rightarrow T^*(\mathbb{R}) \]

\[f^*(C'_y) \]

\[T^*_f(x,a)(Y) \rightarrow (X \times A) \times_Y T^*(Y) \rightarrow T^*(Y) \]

\[f' \]

\[T^*_f(x,a)(X \times A) \leftarrow T^*(X \times A) \]

\[1 \cong T^*(1) \]

\[(x,a) \rightarrow X \times A \rightarrow Y \rightarrow C_y \rightarrow \mathbb{R} \]
The part we don’t understand

Now: Chase $1 \in \mathbb{R}$ to $T^*(X \times A)$ and then apply

$$\mu_\varepsilon : T^*(X \times A) \rightarrow X \times A$$

The result is $\langle r, U \rangle (a, x, y)$
The part we don’t understand

Now: Chase $1 \in \mathbb{R}$ to $T^*(X \times A)$ and then apply

$$\mu_\varepsilon : T^*(X \times A) \rightarrow X \times A$$

The result is $\langle r, U \rangle (a, x, y)$

μ_ε takes a finite step in the gradient direction:

$$\mu_\varepsilon((x, a), (v, w)) = (x + v, a + \varepsilon w)$$
The part we don’t understand

Now: Chase $1 \in \mathbb{R}$ to $T^*(X \times A)$ and then apply

$$\mu_\varepsilon : T^*(X \times A) \to X \times A$$

The result is $\langle r, U \rangle (a, x, y)$

μ_ε takes a finite step in the gradient direction:

$$\mu_\varepsilon((x, a), (v, w)) = (x + v, a + \varepsilon w)$$

What is μ_ε? We couldn’t find any nice properties
The part we don’t understand

Now: Chase $1 \in \mathbb{R}$ to $T^*(X \times A)$ and then apply

$$\mu_\varepsilon : T^*(X \times A) \rightarrow X \times A$$

The result is $\langle r, U \rangle (a, x, y)$

μ_ε takes a finite step in the gradient direction:

$$\mu_\varepsilon((x, a), (v, w)) = (x + v, a + \varepsilon w)$$

What is μ_ε? We couldn’t find any nice properties

It looks a bit like a thing called an exponential map
The catch

Conjecture: This defines a symmetric monoidal functor

\[\text{Para}(\text{Bund}(\text{Top})) \supseteq \text{Im}(\text{Para}(\text{Cot})) \to \text{Learn} \]
The catch

Conjecture: This defines a symmetric monoidal functor

\[\text{Para}(\text{Bund}(\text{Top})) \supseteq \text{Im}(\text{Para}(\text{Cot})) \to \text{Learn} \]

Another conjecture: This commutes:

\[\begin{array}{ccc}
\text{Para}(\text{Euc}) & \xrightarrow{\text{Para}(\text{Cot})} & \text{Im}(\text{Para}(\text{Cot})) \\
\downarrow & & \downarrow \\
\text{Learn} & & \text{Learn}
\end{array} \]
The catch

Conjecture: This defines a symmetric monoidal functor

\[\text{Para}(\text{Bund}(\text{Top})) \supseteq \text{Im}(\text{Para}(\text{Cot})) \rightarrow \text{Learn} \]

Another conjecture: This commutes:

\[\text{Para}(\text{Euc}) \xrightarrow{\text{Para}(\text{Cot})} \text{Im}(\text{Para}(\text{Cot})) \rightarrow \text{Learn} \]

The catch: We think \(\text{Para}(\text{Cot}) \) is an equivalence of categories onto its image
The catch

Conjecture: This defines a symmetric monoidal functor

\[\text{Para}(\text{Bund}(\text{Top})) \supseteq \text{Im}(\text{Para}(\text{Cot})) \rightarrow \text{Learn} \]

Another conjecture: This commutes:

\[\text{Para}(\text{Euc}) \xrightarrow{\text{Para}(\text{Cot})} \text{Im}(\text{Para}(\text{Cot})) \]

\[\downarrow \]

\[\text{Learn} \]

The catch: We think \(\text{Para}(\text{Cot}) \) is an equivalence of categories onto its image

So, we’ve just rewritten Backprop as Functor in a different way!
Even more hard questions

What happens if we extend the functor to the whole of $\text{Para}(\text{Bund}(\text{Top}))$? We have no idea!

Optimistic hope: This allows defining general “ML-like” systems, not necessarily involving gradients (eg. “discrete ML” on Bayesian networks)