Simulation of quantum circuits by ZX-diagram contraction

John van de Wetering

john@vdwetering.name

Institute for Computing and Information Sciences
Radboud University Nijmegen

September 6, 2019
Holy Trinity of quantum circuits

Optimization

Verification
Holy Trinity of quantum circuits
Holy Trinity of quantum circuits

Optimization

PyZX

Simulation Verification
Quantum circuit simulation

The Problem: Given quantum circuit \(C \), and input state \(|\psi\rangle \), answer some question about \(C |\psi\rangle \).

Why do we care?

§ Verification of correctness of circuits.
§ Modelling physical systems.
§ Understand when quantum supremacy has been reached.
Quantum circuit simulation

The Problem: Given quantum circuit C, and input state $|\psi\rangle$, answer some question about $C |\psi\rangle$. E.g. Find the probability $|\langle 0 \cdots 0 |C |\psi\rangle|^2$.

Why do we care?
- Verification of correctness of circuits.
- Modelling physical systems.
- Understand when quantum supremacy has been reached.
Quantum circuit simulation

The Problem: Given quantum circuit C, and input state $|\psi\rangle$, answer some question about $C |\psi\rangle$.
E.g. Find the probability $|\langle 0 \cdots 0 | C |\psi\rangle|^2$.

Why do we care?

- Verification of correctness of circuits.
- Modelling physical systems.
- Understand when quantum supremacy has been reached.
Suppose we measure all qubits in computational basis at the end of the circuit. Then we get a probability distribution

\[P(x_1 \cdots x_n) = |\langle x_1 \cdots x_n | C | \psi \rangle|^2 \]
Weak versus Strong simulation

Suppose we measure all qubits in computational basis at the end of the circuit. Then we get a probability distribution

$$P(x_1 \cdots x_n) = |\langle x_1 \cdots x_n | C |\psi\rangle|^2$$

Weak simulation: sample from this distribution. This is **BQP**-complete.

Strong simulation: get any marginal probability of $P(x_1 \cdots x_n)$. This is **#P**-hard.
Weak versus Strong simulation

Suppose we measure all qubits in computational basis at the end of the circuit. Then we get a probability distribution

\[P(x_1 \cdots x_n) = |\langle x_1 \cdots x_n | C | \psi \rangle|^2 \]

Weak simulation: sample from this distribution.
This is \textbf{BQP}-complete.

Strong simulation: get any marginal probability of \(P(x_1 \cdots x_n) \).
This is \textbf{\#P}-hard.
Write n-qubit state as 2^n complex numbers. Every gate in the circuit modifies this vector.
Write n-qubit state as 2^n complex numbers. Every gate in the circuit modifies this vector.

- Naively, for $n = 50$ would take $\approx 1000\ TB$.
Direct simulation

Write n-qubit state as 2^n complex numbers. Every gate in the circuit modifies this vector.

- Naively, for $n = 50$ would take $\approx 1000 \ TB$.
- But $n \approx 80$ has been achieved in practice by being smart. (exploiting sparsity, limited depth of circuit, etc.)
Direct simulation

Write n-qubit state as 2^n complex numbers. Every gate in the circuit modifies this vector.

- Naively, for $n = 50$ would take $\approx 1000\ TB$.
- But $n \approx 80$ has been achieved in practice by being smart. (exploiting sparsity, limited depth of circuit, etc.)

All these methods in a sense rely on tensor contraction. They are all exponential in number of qubits.
Stabilizer decompositions 1

Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?
Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.
Stabilizer decompositions 1

Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
 Clifford circuit C & $|T\rangle$ magic state ancillae.
Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
 Clifford circuit C & $|T\rangle$ magic state ancillae.

2. Write input state + ancillae as linear combination of Cliffords:
 $|\psi\rangle = \sum_{i=1}^{n} \lambda_i |\phi_i\rangle$.
Gottesman-Knill Theorem
Any Clifford computation can be efficiently simulated.

Q: Can we exploit this somehow to simulate arbitrary circuits?

Observation: Clifford states linearly span the set of all states.

1. Gadgetize T-gates to write any circuit as:
 Clifford circuit $C \& |T\rangle$ magic state ancillae.

2. Write input state + ancillae as linear combination of Cliffords:
 $|\psi\rangle = \sum_i^n \lambda_i |\phi_i\rangle$.

3. Note: Each $C |\phi_i\rangle$ can be efficiently simulated!
Given Clifford circuit C and input $|\psi\rangle = \sum_i^n \lambda_i |\phi_i\rangle$
where the $|\phi_i\rangle$ are Clifford. How do we approximate $C |\psi\rangle$?

Two methods:

1. Monte-Carlo over the $|\phi_i\rangle$ weighted by $|\lambda_i\rangle$.
 Polynomial in the negativity λ^\dagger^λ.

2. Compute $\lambda_i \rho_i C |\phi_i\rangle$.
 Polynomial in the stabilizer rank $R |\psi_q\rangle$.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.
We will only use the second approach.
Stabilizer decompositions 2

Given Clifford circuit \(C \) and input \(|\psi\rangle = \sum_{i}^{n} \lambda_{i} |\phi_{i}\rangle \) where the \(|\phi_{i}\rangle \) are Clifford. How do we approximate \(C |\psi\rangle \)?

Two methods:

1. Monte-Carlo over the \(|\phi_{i}\rangle \) weighted by \(|\lambda_{i}| \).
 Polynomial in the \textit{negativity}: \(\lambda = \sum_{i}^{n} |\lambda_{i}| \).
Given Clifford circuit C and input $|\psi\rangle = \sum_i^n \lambda_i |\phi_i\rangle$ where the $|\phi_i\rangle$ are Clifford. How do we approximate $C |\psi\rangle$?

Two methods:

1. Monte-Carlo over the $|\phi_i\rangle$ weighted by $|\lambda_i|$. Polynomial in the negavity: $\lambda = \sum_i^n |\lambda_i|$.

2. Compute $\sum_i^n \lambda_i C |\phi_i\rangle$. Polynomial in the stabilizer rank: $R(|\psi\rangle) = n$.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.
We will only use the second approach.
Given Clifford circuit C and input $|\psi\rangle = \sum^n_i \lambda_i |\phi_i\rangle$
where the $|\phi_i\rangle$ are Clifford. How do we approximate $C |\psi\rangle$?

Two methods:

1. Monte-Carlo over the $|\phi_i\rangle$ weighted by $|\lambda_i|$.
 Polynomial in the *negativity*: $\lambda = \sum^n_i |\lambda_i|$.

2. Compute $\sum^n_i \lambda_i C |\phi_i\rangle$.
 Polynomial in the *stabilizer rank*: $R(|\psi\rangle) = n$.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.
Given Clifford circuit C and input $|\psi\rangle = \sum_i^n \lambda_i |\phi_i\rangle$ where the $|\phi_i\rangle$ are Clifford. How do we approximate $C|\psi\rangle$?

Two methods:

1. Monte-Carlo over the $|\phi_i\rangle$ weighted by $|\lambda_i|$. Polynomial in the *negativity*: $\lambda = \sum_i^n |\lambda_i|$.

2. Compute $\sum_i^n \lambda_i C |\phi_i\rangle$. Polynomial in the *stabilizer rank*: $R(|\psi\rangle) = n$.

Benefit of first: can deal with density matrices and noise.
Benefit of second: better constants and thus scaling.

We will only use the second approach.
Stabilizer rank

T-magic state $| T \rangle := |0\rangle + e^{i\pi/4} |1\rangle$ has rank $R(| T \rangle) = 2$.
Stabilizer rank

T-magic state $|T\rangle := |0\rangle + e^{i\pi/4}|1\rangle$ has rank $R(|T\rangle) = 2$. Hence:

$$R(|T\rangle^\otimes n) \leq 2^n$$

e.g. $|T\rangle^\otimes |T\rangle = |00\rangle + e^{i\pi/4}|01\rangle + e^{i\pi/4}|10\rangle + e^{i\pi/2}|11\rangle$
Stabilizer rank

T-magic state $|T\rangle := |0\rangle + e^{i\pi/4} |1\rangle$ has rank $R(|T\rangle) = 2$. Hence:

$$R(|T\rangle^\otimes n) \leq 2^n$$

e.g. $|T\rangle^\otimes |T\rangle = |00\rangle + e^{i\pi/4} |01\rangle + e^{i\pi/4} |10\rangle + e^{i\pi/2} |11\rangle$

But also: $|T\rangle^\otimes |T\rangle = (|00\rangle + i |11\rangle) + e^{i\pi/4} (|01\rangle + |10\rangle)$, so actually $R(|T\rangle^\otimes 2) = 2$,

Stabilizer rank

T-magic state $|T\rangle := |0\rangle + e^{i\pi/4} |1\rangle$ has rank $R(|T\rangle) = 2$. Hence:

$$R(|T\rangle^{\otimes n}) \leq 2^n$$

e.g. $|T\rangle^{\otimes} |T\rangle = |00\rangle + e^{i\pi/4} |01\rangle + e^{i\pi/4} |10\rangle + e^{i\pi/2} |11\rangle$

But also: $|T\rangle^{\otimes} |T\rangle = (|00\rangle + i |11\rangle) + e^{i\pi/4} (|01\rangle + |10\rangle)$, so actually $R(|T\rangle^{\otimes 2}) = 2$, and hence:

$$R(|T\rangle^{\otimes n}) = R((|T\rangle \otimes |T\rangle)^{n/2}) \leq 2^{n/2}$$
Stabilizer rank

T-magic state $|T\rangle := |0\rangle + e^{i\pi/4} |1\rangle$ has rank $R(|T\rangle) = 2$. Hence:

$$R(|T\rangle^\otimes n) \leq 2^n$$

e.g. $|T\rangle \otimes |T\rangle = |00\rangle + e^{i\pi/4} |01\rangle + e^{i\pi/4} |10\rangle + e^{i\pi/2} |11\rangle$

But also: $|T\rangle \otimes |T\rangle = (|00\rangle + i |11\rangle) + e^{i\pi/4} (|01\rangle + |10\rangle)$, so actually $R(|T\rangle^\otimes 2) = 2$, and hence:

$$R(|T\rangle^\otimes n) = R((|T\rangle \otimes |T\rangle)^{n/2}) \leq 2^{n/2}$$

Can also show that $R(|T\rangle^\otimes 6) = 7$, and hence:

$$R(|T\rangle^\otimes n) \leq 2^{\alpha n} \quad \text{where } \alpha = \log_2(7)/6 \approx 0.468$$
The goal: combine tensor contraction & stabilizer decompositions using the ZX-calculus.
ZX-diagrams

What gates are to circuits, *spiders* are to ZX-diagrams.
ZX-diagrams

What gates are to circuits, spiders are to ZX-diagrams.

Z-spider
\[|0 \cdots 0\rangle \langle 0 \cdots 0| + e^{i\alpha} |1 \cdots 1\rangle \langle 1 \cdots 1| \]

X-spider
\[|+ \cdots +\rangle \langle + \cdots +| + e^{i\alpha} |\cdots -\rangle \langle \cdots -| \]
ZX-diagrams

What gates are to circuits, *spiders* are to ZX-diagrams.

\[
\begin{align*}
\text{Z-spider} & \\
|0 \cdots 0\rangle \langle 0 \cdots 0| & + e^{i \alpha} |1 \cdots 1\rangle \langle 1 \cdots 1| \\
\end{align*}
\]

\[
\begin{align*}
\text{X-spider} & \\
|+ \cdots +\rangle \langle + \cdots +| & + e^{i \alpha} |- \cdots -\rangle \langle - \cdots -| \\
\end{align*}
\]

Spiders can be wired in any way:
Quantum gates as ZX-diagrams

Every quantum gate can be written as a ZX-diagram:

\[
\begin{align*}
S &= \bigoplus x_1 = \frac{\pi}{2} \\
T &= \bigoplus x_2 = \frac{\pi}{4} \\
H &= \bigoplus x_1 = \bigotimes x_2 = \frac{\pi}{2} \bigotimes \frac{\pi}{2} \bigotimes \frac{\pi}{2} \\
CNOT &= x_1 \bigotimes x_2 \\
CZ &= \bigotimes x_1 = \bigotimes x_2
Quantum gates as ZX-diagrams

Every quantum gate can be written as a ZX-diagram:

\[S = \begin{array}{c}
\text{\rotatebox{90}{π}}
\end{array} \quad T = \begin{array}{c}
\text{\rotatebox{90}{$\pi/4$}}
\end{array} \quad H = \begin{array}{c}
\text{\rotatebox{90}{$\pi/2$}}
\end{array} \quad := \begin{array}{c}
\text{\rotatebox{90}{$\pi/2$} \quad \text{\rotatebox{90}{$\pi/2$} \quad \text{\rotatebox{90}{$\pi/2$}}}
\end{array} \quad \text{CNOT} = \begin{array}{c}
\text{\rotatebox{90}{$\pi/2$}}
\end{array} \quad \text{CZ} = \begin{array}{c}
\text{\rotatebox{90}{$\pi/2$}}
\end{array} \quad = \begin{array}{c}
\text{\rotatebox{90}{$\pi/2$}}
\end{array} \]

Universality

Any linear map between qubits can be represented as a ZX-diagram.
Rules for ZX-diagrams: The ZX-calculus

\[\alpha, \beta \in [0, 2\pi], \ a \in \{0, 1\} \]
Completeness of the ZX-calculus

Theorem
ZX-diagrams representing same linear map, can be transformed into one another using previous rules (and some additional ones).
Circuit simulation with ZX-calculus

1. Write circuit+state as ZX-diagram.
2. Simplify using ZX-calculus rules.
Circuit simulation with ZX-calculus

1. Write circuit + state as ZX-diagram.
2. Simplify using ZX-calculus rules.
3. Replace magic states by stabilizer decomposition.
Circuit simulation with ZX-calculus

1. Write circuit+state as ZX-diagram.
2. Simplify using ZX-calculus rules.
3. Replace magic states by stabilizer decomposition.
4. Repeat.
5. ...
6. Profit!
Simplifying ZX-diagrams

Same as in previous talk
(local complementation, pivoting, gadgetization)
Simplifying ZX-diagrams

Same as in previous talk
(local complementation, pivoting, gadgetization)
But:
 ▶ All rewrites now need to be scalar accurate.
Simplifying ZX-diagrams

Same as in previous talk
(local complementation, pivoting, gadgetization)

But:

- All rewrites now need to be scalar accurate.
- We no longer care about circuit extraction, so we can do more stuff!
Scalar-accurate local complementation and pivot

\[e^{\pm i\pi/4} \sqrt{2^{\frac{(n-1)(n-2)}{2}}} \]

These variations kill all internal Clifford spiders.
Scalar-accurate local complementation and pivot

These variations kill all internal Clifford spiders.
Further optimization

From previous talk:

\[
\alpha \beta \ldots = \alpha \beta \ldots = \alpha + \beta \\
\alpha_1 \beta \ldots \alpha_n \beta = (\frac{1}{\sqrt{2}})^{n-1} \alpha_1 \alpha_n \ldots
\]
New rule: Supplementarity

Rule used in ZX for completeness:

\[\alpha \quad \alpha + \pi \quad 2\alpha + \pi \]

\[= \quad \frac{1}{2} \]

\[\alpha \quad \alpha + \pi \quad 2\alpha + \pi \]
New rule: Supplementarity

Rule used in ZX for completeness:

\[\alpha = \frac{1}{2} \]

Can be generalised to following four cases:

\[\alpha + \pi = \frac{1}{2^n} \]

\[-\alpha + \pi = -\frac{e^{-i\alpha}}{2^n} \]

\[e^{-i\alpha} = \frac{1}{2^{n+1}} \]
Example

Consider benchmark circuit hw6: 7 qubits, and 105 T-gates. After PyZX simplification: 75 T-gates.
Example

Consider benchmark circuit hwb6: 7 qubits, and 105 T-gates. After PyZX simplification: 75 T-gates. Inputting the state $|++---+-\rangle$ and effect $\langle +011 - 1- |$,

This has 33 T-gates.
Consider benchmark circuit hw6: 7 qubits, and 105 T-gates. After PyZX simplification: 75 T-gates. Inputting the state $|+ + - - - + -\rangle$ and effect $\langle +011 - 1- |$, and further simplifying gives (up to scalar):

This has 33 T-gates.
Now we should apply the stabilizer decomposition to these states.
Stabilizer decompositions in ZX

\[\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2} + \pi \]

But what about the 6 T-gate rank 7 decomposition?
FIG. 3. Graphs G' and G'' used in the definition of stabilizer states ϕ' and ϕ''; see Eq. (11).

$$|H^{\otimes 6}\rangle = (-16 + 12\sqrt{2})|B_{6,0}\rangle + (96 - 68\sqrt{2})|B_{6,6}\rangle + (10 - 7\sqrt{2})|E_6\rangle + (-14 + 10\sqrt{2})|O_6\rangle + (7 - 5\sqrt{2})Z^{\otimes 6}|K_6\rangle + (10 - 7\sqrt{2})|\phi'\rangle + (10 - 7\sqrt{2})|\phi''\rangle,$$

where

$$|\phi'\rangle = \prod_{(i,j) \in E'} \Lambda(Z)_{i,j}|O_6\rangle \quad \text{and} \quad |\phi''\rangle = \prod_{(i,j) \in E''} \Lambda(Z)_{i,j}|O_6\rangle.$$

$e^{i\pi/4} = +2e^{i\pi/4}$

$-\frac{1+\sqrt{2}}{4} + \frac{1-\sqrt{2}}{4}$

$-2\sqrt{2}i - 2i + 8\sqrt{2}i + 8\sqrt{2}i$
Demo time
Conclusions

- With ZX-calculus we can combine tensor contraction with stabilizer decomposition.
Conclusions

- With ZX-calculus we can combine tensor contraction with stabilizer decomposition.
- With rewriting we can further reduce amount of non-Cliffords in each sub-diagram.
Conclusions

- With ZX-calculus we can combine tensor contraction with stabilizer decomposition.
- With rewriting we can further reduce amount of non-Cliffords in each sub-diagram.
- Even removing just 1 extra spider in every diagram would allow \(\approx 15\% \) bigger circuits.
Future work

- Investigate which groups of spiders should be replaced.
- Find right trade-off in using more computation early on.
Future work

- Investigate which groups of spiders should be replaced.
- Find right trade-off in using more computation early on.
- Approximate decompositions and pruning of small branches.
Future work

- Investigate which groups of spiders should be replaced.
- Find right trade-off in using more computation early on.
- Approximate decompositions and pruning of small branches.
- Make high-performance implementation of the algorithm.
Future work

- Investigate which groups of spiders should be replaced.
- Find right trade-off in using more computation early on.
- Approximate decompositions and pruning of small branches.
- Make high-performance implementation of the algorithm.
- Marginal probabilities possible with CPM construction. Is there a better way?
Thank you for your attention!

[Image of an airplane with the text F-PYZX]

github.com/Quantomatic/pyzx zxcalculus.com/pyzx